计算时间#

21:22.381 全部画廊的278个文件总执行时间

示例

时间

内存 (MB)

异常值检测估计器的评估 (../examples/miscellaneous/plot_outlier_detection_bench.py)

01:05.097

0.0

基于模型的特征选择和顺序特征选择 (../examples/feature_selection/plot_select_from_model_diabetes.py)

00:50.848

0.0

使用Pipeline和GridSearchCV选择降维方法 (../examples/compose/plot_compare_reduction.py)

00:42.909

0.0

比较随机森林和直方图梯度提升模型 (../examples/ensemble/plot_forest_hist_grad_boosting_comparison.py)

00:39.620

0.0

使用多项式核近似进行可扩展学习 (../examples/kernel_approximation/plot_scalable_poly_kernels.py)

00:39.458

0.0

手写数字的流形学习:局部线性嵌入、Isomap等 (../examples/manifold/plot_lle_digits.py)

00:37.999

0.0

成本敏感学习的决策阈值后调优 (../examples/model_selection/plot_cost_sensitive_learning.py)

00:35.875

0.0

决策函数截止点的后验调优 (../examples/model_selection/plot_tuned_decision_threshold.py)

00:33.969

0.0

绘制学习曲线并检查模型的可扩展性 (../examples/model_selection/plot_learning_curve.py)

00:29.969

0.0

使用字典学习进行图像去噪 (../examples/decomposition/plot_image_denoising.py)

00:29.622

0.0

随机梯度下降的早期停止 (../examples/linear_model/plot_sgd_early_stopping.py)

00:28.933

0.0

比较超参数估计的随机搜索和网格搜索 (../examples/model_selection/plot_randomized_search.py)

00:28.031

0.0

文本特征提取和评估的示例管道 (../examples/model_selection/plot_grid_search_text_feature_extraction.py)

00:26.612

0.0

比较目标编码器与其他编码器 (../examples/preprocessing/plot_target_encoder.py)

00:21.022

0.0

流形学习方法比较 (../examples/manifold/plot_compare_methods.py)

00:20.244

0.0

局部依赖和个体条件期望图 (../examples/inspection/plot_partial_dependence.py)

00:20.237

0.0

使用堆叠组合预测器 (../examples/ensemble/plot_stack_predictors.py)

00:19.441

0.0

切断球体上的流形学习方法 (../examples/manifold/plot_manifold_sphere.py)

00:19.112

0.0

平衡模型复杂度和交叉验证分数 (../examples/model_selection/plot_grid_search_refit_callable.py)

00:18.332

0.0

直方图梯度提升树中的特征 (../examples/ensemble/plot_hgbt_regression.py)

00:18.194

0.0

泊松回归和非正态损失 (../examples/linear_model/plot_poisson_regression_non_normal_loss.py)

00:17.753

0.0

多类别训练元估计器概述 (../examples/multiclass/plot_multiclass_overview.py)

00:17.156

0.0

瑞士卷和瑞士孔降维 (../examples/manifold/plot_swissroll.py)

00:16.974

0.0

SVC的正则化参数缩放 (../examples/svm/plot_svm_scale_c.py)

00:15.820

0.0

时间相关特征工程 (../examples/applications/plot_cyclical_feature_engineering.py)

00:15.109

0.0

scikit-learn 0.24版本亮点 (../examples/release_highlights/plot_release_highlights_0_24_0.py)

00:14.909

0.0

核岭回归和SVR的比较 (../examples/miscellaneous/plot_kernel_ridge_regression.py)

00:14.356

0.0

scikit-learn 1.8版本亮点 (../examples/release_highlights/plot_release_highlights_1_8_0.py)

00:13.717

0.0

预测延迟 (../examples/applications/plot_prediction_latency.py)

00:13.003

0.0

随机投影嵌入的Johnson-Lindenstrauss界限 (../examples/miscellaneous/plot_johnson_lindenstrauss_bound.py)

00:12.171

0.0

HDBSCAN聚类算法演示 (../examples/cluster/plot_hdbscan.py)

00:11.854

0.0

使用排列检验分类分数的显著性 (../examples/model_selection/plot_permutation_tests_for_classification.py)

00:11.151

0.0

使用多项式逻辑回归 + L1在MNIST上进行分类 (../examples/linear_model/plot_sparse_logistic_regression_mnist.py)

00:10.791

0.0

交叉验证网格搜索的自定义重新拟合策略 (../examples/model_selection/plot_grid_search_digits.py)

00:10.200

0.0

线性模型系数解释中的常见陷阱 (../examples/inspection/plot_linear_model_coefficient_interpretation.py)

00:09.893

0.0

使用非负矩阵分解和潜在狄利克雷分配进行主题提取 (../examples/applications/plot_topics_extraction_with_nmf_lda.py)

00:09.887

0.0

梯度提升回归的预测区间 (../examples/ensemble/plot_gradient_boosting_quantile.py)

00:09.880

0.0

在cross_val_score和GridSearchCV上演示多指标评估 (../examples/model_selection/plot_multi_metric_evaluation.py)

00:09.662

0.0

梯度提升的袋外估计 (../examples/ensemble/plot_gradient_boosting_oob.py)

00:09.347

0.0

保险索赔上的Tweedie回归 (../examples/linear_model/plot_tweedie_regression_insurance_claims.py)

00:09.220

0.0

鸢尾花数据集上的高斯过程分类 (GPC) (../examples/gaussian_process/plot_gpc_iris.py)

00:08.552

0.0

时间序列预测的滞后特征 (../examples/applications/plot_time_series_lagged_features.py)

00:08.489

0.0

在构建估计器之前填充缺失值 (../examples/impute/plot_missing_values.py)

00:08.208

0.0

人脸数据集分解 (../examples/decomposition/plot_faces_decomposition.py)

00:08.159

0.0

用于分类的Normal、Ledoit-Wolf和OAS线性判别分析 (../examples/classification/plot_lda.py)

00:08.019

0.0

物种分布建模 (../examples/applications/plot_species_distribution_modeling.py)

00:07.403

0.0

比较不同缩放器对带异常值数据的影响 (../examples/preprocessing/plot_all_scaling.py)

00:07.123

0.0

网格搜索与连续减半的比较 (../examples/model_selection/plot_successive_halving_heatmap.py)

00:07.082

0.0

具有多重共线或相关特征的排列重要性 (../examples/inspection/plot_permutation_importance_multicollinear.py)

00:07.050

0.0

梯度提升正则化 (../examples/ensemble/plot_gradient_boosting_regularization.py)

00:06.976

0.0

文本文档的核外分类 (../examples/applications/plot_out_of_core_classification.py)

00:06.937

0.0

使用k-means对文本文档进行聚类 (../examples/text/plot_document_clustering.py)

00:06.559

0.0

嵌套与非嵌套交叉验证 (../examples/model_selection/plot_nested_cross_validation_iris.py)

00:06.443

0.0

变分贝叶斯高斯混合的浓度先验类型分析 (../examples/mixture/plot_concentration_prior.py)

00:06.295

0.0

排列重要性 vs 随机森林特征重要性 (MDI) (../examples/inspection/plot_permutation_importance.py)

00:06.265

0.0

使用IterativeImputer的变体填充缺失值 (../examples/impute/plot_iterative_imputer_variants_comparison.py)

00:06.116

0.0

绘制鸢尾花数据集上树集成模型的决策面 (../examples/ensemble/plot_forest_iris.py)

00:06.066

0.0

使用稀疏特征对文本文档进行分类 (../examples/text/plot_document_classification_20newsgroups.py)

00:06.043

0.0

使用特征脸和SVM进行人脸识别示例 (../examples/applications/plot_face_recognition.py)

00:06.002

0.0

使用核PCA进行图像去噪 (../examples/applications/plot_digits_denoising.py)

00:05.967

0.0

使用谱系双聚类算法对文档进行双聚类 (../examples/bicluster/plot_bicluster_newsgroups.py)

00:05.701

0.0

scikit-learn 1.2版本亮点 (../examples/release_highlights/plot_release_highlights_1_2_0.py)

00:05.676

0.0

在玩具数据集上比较不同的聚类算法 (../examples/cluster/plot_cluster_comparison.py)

00:05.658

0.0

使用线性和非线性核的支持向量回归 (SVR) (../examples/svm/plot_svm_regression.py)

00:05.648

0.0

20newsgroups上的多类别稀疏逻辑回归 (../examples/linear_model/plot_sparse_logistic_regression_20newsgroups.py)

00:05.612

0.0

连续减半迭代 (../examples/model_selection/plot_successive_halving_iterations.py)

00:05.524

0.0

高斯过程回归 (GPR) 估计数据噪声水平的能力 (../examples/gaussian_process/plot_gpr_noisy.py)

00:05.486

0.0

MNIST上MLP权重的可视化 (../examples/neural_networks/plot_mnist_filters.py)

00:05.423

0.0

自训练阈值变化的影响 (../examples/semi_supervised/plot_self_training_varying_threshold.py)

00:05.289

0.0

可视化股票市场结构 (../examples/applications/plot_stock_market.py)

00:04.902

0.0

对希腊硬币图片进行区域分割 (../examples/cluster/plot_coin_segmentation.py)

00:04.819

0.0

RBF SVM参数 (../examples/svm/plot_rbf_parameters.py)

00:04.772

0.0

文本数据集上的半监督分类 (../examples/semi_supervised/plot_semi_supervised_newsgroups.py)

00:04.771

0.0

模型正则化对训练和测试误差的影响 (../examples/model_selection/plot_train_error_vs_test_error.py)

00:04.646

0.0

FeatureHasher和DictVectorizer比较 (../examples/text/plot_hashing_vs_dict_vectorizer.py)

00:04.607

0.0

模型复杂度的影响 (../examples/applications/plot_model_complexity_influence.py)

00:04.435

0.0

梯度提升中的分类特征支持 (../examples/ensemble/plot_gradient_boosting_categorical.py)

00:04.379

0.0

手写数字数据上的K-Means聚类演示 (../examples/cluster/plot_kmeans_digits.py)

00:04.309

0.0

核岭回归和高斯过程回归的比较 (../examples/gaussian_process/plot_compare_gpr_krr.py)

00:04.117

0.0

使用高斯过程回归 (GPR) 预测Mona Loa数据集上的CO2水平 (../examples/gaussian_process/plot_gpr_co2.py)

00:03.994

0.0

核密度估计 (../examples/neighbors/plot_digits_kde_sampling.py)

00:03.712

0.0

特征离散化 (../examples/preprocessing/plot_discretization_classification.py)

00:03.436

0.0

物种分布的核密度估计 (../examples/neighbors/plot_species_kde.py)

00:03.413

0.0

多类别AdaBoost决策树 (../examples/ensemble/plot_adaboost_multiclass.py)

00:03.299

0.0

在玩具数据集上比较异常值检测算法 (../examples/miscellaneous/plot_anomaly_comparison.py)

00:03.269

0.0

随机森林的OOB误差 (../examples/ensemble/plot_ensemble_oob.py)

00:03.264

0.0

比较BIRCH和MiniBatchKMeans (../examples/cluster/plot_birch_vs_minibatchkmeans.py)

00:03.141

0.0

使用概率PCA和因子分析 (FA) 进行模型选择 (../examples/decomposition/plot_pca_vs_fa_model_selection.py)

00:03.134

0.0

t-SNE:不同困惑度值对形状的影响 (../examples/manifold/plot_t_sne_perplexity.py)

00:02.924

0.0

递归特征消除 (../examples/feature_selection/plot_rfe_digits.py)

00:02.804

0.0

分类器校准比较 (../examples/calibration/plot_compare_calibration.py)

00:02.760

0.0

比较MLPClassifier的随机学习策略 (../examples/neural_networks/plot_mlp_training_curves.py)

00:02.553

0.0

使用预计算的Gram矩阵和加权样本拟合弹性网络 (../examples/linear_model/plot_elastic_net_precomputed_gram_matrix_with_weighted_samples.py)

00:02.551

0.0

稳健协方差与经验协方差估计 (../examples/covariance/plot_robust_vs_empirical_covariance.py)

00:02.515

0.0

梯度提升中的早期停止 (../examples/ensemble/plot_gradient_boosting_early_stopping.py)

00:02.422

0.0

具有异构数据源的列转换器 (../examples/compose/plot_column_transformer.py)

00:02.417

0.0

使用多输出估计器进行人脸补全 (../examples/miscellaneous/plot_multioutput_face_completion.py)

00:02.411

0.0

绘制分类概率 (../examples/classification/plot_classification_probability.py)

00:02.401

0.0

概率校准曲线 (../examples/calibration/plot_calibration_curve.py)

00:02.376

0.0

使用局部依赖的高级绘图 (../examples/miscellaneous/plot_partial_dependence_visualization_api.py)

00:02.296

0.0

Ledoit-Wolf vs OAS估计 (../examples/covariance/plot_lw_vs_oas.py)

00:02.252

0.0

用于数字分类的受限玻尔兹曼机特征 (../examples/neural_networks/plot_rbm_logistic_classification.py)

00:02.139

0.0

精确度-召回率 (../examples/model_selection/plot_precision_recall.py)

00:02.113

0.0

使用树集成进行特征转换 (../examples/ensemble/plot_feature_transformation.py)

00:02.026

0.0

有结构和无结构的层次聚类 (../examples/cluster/plot_ward_structured_vs_unstructured.py)

00:01.992

0.0

高斯过程分类 (GPC) 的概率预测 (../examples/gaussian_process/plot_gpc.py)

00:01.986

0.0

归纳聚类 (../examples/cluster/plot_inductive_clustering.py)

00:01.972

0.0

鸢尾花数据集上的主成分分析 (PCA) (../examples/decomposition/plot_pca_iris.py)

00:01.923

0.0

将数据映射到正态分布 (../examples/preprocessing/plot_map_data_to_normal.py)

00:01.893

0.0

稳健线性估计器拟合 (../examples/linear_model/plot_robust_fit.py)

00:01.891

0.0

scikit-learn 1.4版本亮点 (../examples/release_highlights/plot_release_highlights_1_4_0.py)

00:01.890

0.0

分类器比较 (../examples/classification/plot_classifier_comparison.py)

00:01.879

0.0

在玩具数据集上比较不同的层次链接方法 (../examples/cluster/plot_linkage_comparison.py)

00:01.770

0.0

向量量化示例 (../examples/cluster/plot_face_compress.py)

00:01.753

0.0

使用类别似然比衡量分类性能 (../examples/model_selection/plot_likelihood_ratios.py)

00:01.750

0.0

人脸补丁字典的在线学习 (../examples/cluster/plot_dict_face_patches.py)

00:01.721

0.0

机器学习无法推断因果效应 (../examples/inspection/plot_causal_interpretation.py)

00:01.693

0.0

多层感知器中的不同正则化 (../examples/neural_networks/plot_mlp_alpha.py)

00:01.663

0.0

scikit-learn 0.22版本亮点 (../examples/release_highlights/plot_release_highlights_0_22_0.py)

00:01.661

0.0

使用分类器链进行多标签分类 (../examples/multioutput/plot_classifier_chain_yeast.py)

00:01.655

0.0

RBF核的显式特征图近似 (../examples/miscellaneous/plot_kernel_approximation.py)

00:01.631

0.0

数字的2D嵌入上的各种凝聚聚类 (../examples/cluster/plot_digits_linkage.py)

00:01.543

0.0

使用邻域成分分析进行降维 (../examples/neighbors/plot_nca_dim_reduction.py)

00:01.485

0.0

使用网格搜索进行模型的统计比较 (../examples/model_selection/plot_grid_search_stats.py)

00:01.443

0.0

OPTICS聚类算法演示 (../examples/cluster/plot_optics.py)

00:01.410

0.0

使用树森林的特征重要性 (../examples/ensemble/plot_forest_importances.py)

00:01.351

0.0

scikit-learn 1.3版本亮点 (../examples/release_highlights/plot_release_highlights_1_3_0.py)

00:01.295

0.0

高斯混合模型选择 (../examples/mixture/plot_gmm_selection.py)

00:01.295

0.0

3类别分类的概率校准 (../examples/calibration/plot_calibration_multiclass.py)

00:01.214

0.0

不同核的先验和后验高斯过程图示 (../examples/gaussian_process/plot_gpr_prior_posterior.py)

00:01.205

0.0

回归模型中目标转换的效果 (../examples/compose/plot_transformed_target.py)

00:01.163

0.0

绘制不同SVM核的分类边界 (../examples/svm/plot_svm_kernels.py)

00:01.151

0.0

压缩感知:使用L1先验 (Lasso) 的断层重建 (../examples/applications/plot_tomography_l1_reconstruction.py)

00:01.148

0.0

梯度提升回归 (../examples/ensemble/plot_gradient_boosting_regression.py)

00:01.142

0.0

具有混合类型的列转换器 (../examples/compose/plot_column_transformer_mixed_types.py)

00:01.080

0.0

密集和稀疏数据上的Lasso (../examples/linear_model/plot_lasso_dense_vs_sparse_data.py)

00:01.074

0.0

聚类性能评估中对偶然性的调整 (../examples/cluster/plot_adjusted_for_chance_measures.py)

00:01.071

0.0

二分K-Means和常规K-Means性能比较 (../examples/cluster/plot_bisect_kmeans.py)

00:01.053

0.0

特征缩放的重要性 (../examples/preprocessing/plot_scaling_importance.py)

00:01.041

0.0

k-means初始化影响的经验评估 (../examples/cluster/plot_kmeans_stability_low_dim_dense.py)

00:01.036

0.0

单个估计器与装袋:偏差-方差分解 (../examples/ensemble/plot_bias_variance.py)

00:01.028

0.0

不同指标的凝聚聚类 (../examples/cluster/plot_agglomerative_clustering_metrics.py)

00:00.998

0.0

可视化scikit-learn中的交叉验证行为 (../examples/model_selection/plot_cv_indices.py)

00:00.998

0.0

管道化:链接PCA和逻辑回归 (../examples/compose/plot_digits_pipe.py)

00:00.964

0.0

SVM平局打破示例 (../examples/svm/plot_svm_tie_breaking.py)

00:00.947

0.0

k-means假设演示 (../examples/cluster/plot_kmeans_assumptions.py)

00:00.912

0.0

使用轮廓分析选择KMeans聚类簇数 (../examples/cluster/plot_kmeans_silhouette_analysis.py)

00:00.895

0.0

Lasso、Lasso-LARS和弹性网络路径 (../examples/linear_model/plot_lasso_lasso_lars_elasticnet_path.py)

00:00.844

0.0

scikit-learn 1.1版本亮点 (../examples/release_highlights/plot_release_highlights_1_1_0.py)

00:00.821

0.0

半监督分类器与SVM在鸢尾花数据集上的决策边界比较 (../examples/semi_supervised/plot_semi_supervised_versus_svm_iris.py)

00:00.818

0.0

Lasso模型选择:AIC-BIC / 交叉验证 (../examples/linear_model/plot_lasso_model_selection.py)

00:00.813

0.0

绘制个体和投票回归预测 (../examples/ensemble/plot_voting_regressor.py)

00:00.801

0.0

scikit-learn 1.5版本亮点 (../examples/release_highlights/plot_release_highlights_1_5_0.py)

00:00.782

0.0

绘制在鸢尾花数据集上训练的决策树决策面 (../examples/tree/plot_iris_dtc.py)

00:00.734

0.0

使用局部异常因子 (LOF) 进行新奇检测 (../examples/neighbors/plot_lof_novelty_detection.py)

00:00.705

0.0

缓存最近邻 (../examples/neighbors/plot_caching_nearest_neighbors.py)

00:00.671

0.0

带交叉验证的递归特征消除 (../examples/feature_selection/plot_rfe_with_cross_validation.py)

00:00.661

0.0

GMM初始化方法 (../examples/mixture/plot_gmm_init.py)

00:00.634

0.0

演示KBinsDiscretizer的不同策略 (../examples/preprocessing/plot_discretization_strategies.py)

00:00.601

0.0

多类别接收者操作特征 (ROC) (../examples/model_selection/plot_roc.py)

00:00.577

0.0

岭系数作为L2正则化的函数 (../examples/linear_model/plot_ridge_coeffs.py)

00:00.571

0.0

两类别AdaBoost (../examples/ensemble/plot_adaboost_twoclass.py)

00:00.571

0.0

稀疏逆协方差估计 (../examples/covariance/plot_sparse_cov.py)

00:00.569

0.0

可视化VotingClassifier的概率预测 (../examples/ensemble/plot_voting_decision_regions.py)

00:00.560

0.0

scikit-learn 0.23版本亮点 (../examples/release_highlights/plot_release_highlights_0_23_0.py)

00:00.551

0.0

比较线性贝叶斯回归器 (../examples/linear_model/plot_ard.py)

00:00.530

0.0

单调约束 (../examples/ensemble/plot_monotonic_constraints.py)

00:00.529

0.0

比较随机森林和多输出元估计器 (../examples/ensemble/plot_random_forest_regression_multioutput.py)

00:00.522

0.0

分位数回归 (../examples/linear_model/plot_quantile_regression.py)

00:00.519

0.0

Theil-Sen回归 (../examples/linear_model/plot_theilsen.py)

00:00.513

0.0

核PCA (../examples/decomposition/plot_kernel_pca.py)

00:00.508

0.0

用于稀疏信号的L1模型 (../examples/linear_model/plot_lasso_and_elasticnet.py)

00:00.475

0.0

多项式和一对多逻辑回归的决策边界 (../examples/linear_model/plot_logistic_multinomial.py)

00:00.468

0.0

简单的一维核密度估计 (../examples/neighbors/plot_kde_1d.py)

00:00.461

0.0

用于图像分割的谱聚类 (../examples/cluster/plot_segmentation_toy.py)

00:00.453

0.0

均值漂移聚类算法演示 (../examples/cluster/plot_mean_shift.py)

00:00.451

0.0

主成分回归与偏最小二乘回归 (../examples/cross_decomposition/plot_pcr_vs_pls.py)

00:00.443

0.0

特征聚集与单变量选择 (../examples/cluster/plot_feature_agglomeration_vs_univariate_selection.py)

00:00.434

0.0

高斯过程回归:基本入门示例 (../examples/gaussian_process/plot_gpr_noisy_targets.py)

00:00.425

0.0

连接多个特征提取方法 (../examples/compose/plot_feature_union.py)

00:00.413

0.0

IsolationForest示例 (../examples/ensemble/plot_isolation_forest.py)

00:00.413

0.0

在硬币图像上演示结构化Ward层次聚类 (../examples/cluster/plot_coin_ward_segmentation.py)

00:00.412

0.0

标签传播数字:主动学习 (../examples/semi_supervised/plot_label_propagation_digits_active_learning.py)

00:00.407

0.0

谱系双聚类算法演示 (../examples/bicluster/plot_spectral_biclustering.py)

00:00.393

0.0

收缩协方差估计:LedoitWolf vs OAS和最大似然 (../examples/covariance/plot_covariance_estimation.py)

00:00.391

0.0

高斯混合模型正弦曲线 (../examples/mixture/plot_gmm_sin.py)

00:00.389

0.0

因子分析 (带旋转) 以可视化模式 (../examples/decomposition/plot_varimax_fa.py)

00:00.389

0.0

带AdaBoost的决策树回归 (../examples/ensemble/plot_adaboost_regression.py)

00:00.382

0.0

使用成本复杂度剪枝对决策树进行后剪枝 (../examples/tree/plot_cost_complexity_pruning.py)

00:00.380

0.0

L1惩罚和逻辑回归中的稀疏性 (../examples/linear_model/plot_logistic_l1_l2_sparsity.py)

00:00.376

0.0

识别手写数字 (../examples/classification/plot_digits_classification.py)

00:00.376

0.0

XOR数据集上的高斯过程分类 (GPC) 图示 (../examples/gaussian_process/plot_gpc_xor.py)

00:00.371

0.0

2D点云上的FastICA与PCA比较 (../examples/decomposition/plot_ica_vs_pca.py)

00:00.360

0.0

普通最小二乘和岭回归 (../examples/linear_model/plot_ols_ridge.py)

00:00.357

0.0

带协方差椭球的线性和二次判别分析 (../examples/classification/plot_lda_qda.py)

00:00.356

0.0

多项式和样条插值 (../examples/linear_model/plot_polynomial_interpolation.py)

00:00.348

0.0

单类别SVM与使用随机梯度下降的单类别SVM (../examples/linear_model/plot_sgdocsvm_vs_ocsvm.py)

00:00.347

0.0

使用FastICA进行盲源分离 (../examples/decomposition/plot_ica_blind_source_separation.py)

00:00.342

0.0

分类器的概率校准 (../examples/calibration/plot_calibration.py)

00:00.333

0.0

使用完全随机树的哈希特征转换 (../examples/ensemble/plot_random_forest_embedding.py)

00:00.325

0.0

真实数据集上的异常值检测 (../examples/applications/plot_outlier_detection_wine.py)

00:00.318

0.0

目标编码器的内部交叉拟合 (../examples/preprocessing/plot_target_encoder_cross_val.py)

00:00.312

0.0

带交叉验证的接收者操作特征 (ROC) (../examples/model_selection/plot_roc_crossval.py)

00:00.309

0.0

绘制岭系数作为正则化函数的函数 (../examples/linear_model/plot_ridge_path.py)

00:00.309

0.0

决策树回归 (../examples/tree/plot_tree_regression.py)

00:00.290

0.0

SVM-Anova:带单变量特征选择的SVM (../examples/svm/plot_svm_anova.py)

00:00.283

0.0

正交匹配追踪 (../examples/linear_model/plot_omp.py)

00:00.276

0.0

使用Display对象进行可视化 (../examples/miscellaneous/plot_display_object_visualization.py)

00:00.262

0.0

使用预计算字典的稀疏编码 (../examples/decomposition/plot_sparse_coding.py)

00:00.256

0.0

SVM:加权样本 (../examples/svm/plot_weighted_samples.py)

00:00.251

0.0

标签传播数字:演示性能 (../examples/semi_supervised/plot_label_propagation_digits.py)

00:00.249

0.0

亲和传播聚类算法演示 (../examples/cluster/plot_affinity_propagation.py)

00:00.244

0.0

使用混淆矩阵评估分类器性能 (../examples/model_selection/plot_confusion_matrix.py)

00:00.243

0.0

谱系协同聚类算法演示 (../examples/bicluster/plot_spectral_coclustering.py)

00:00.238

0.0

使用贝叶斯岭回归进行曲线拟合 (../examples/linear_model/plot_bayesian_ridge_curvefit.py)

00:00.229

0.0

稳健协方差估计和马哈拉诺比斯距离相关性 (../examples/covariance/plot_mahalanobis_distances.py)

00:00.228

0.0

SGD:惩罚项 (../examples/linear_model/plot_sgd_penalties.py)

00:00.227

0.0

高斯混合模型椭球体 (../examples/mixture/plot_gmm.py)

00:00.199

0.0

增量PCA (../examples/decomposition/plot_incremental_pca.py)

00:00.199

0.0

使用KBinsDiscretizer离散化连续特征 (../examples/preprocessing/plot_discretization.py)

00:00.198

0.0

最近邻分类 (../examples/neighbors/plot_classification.py)

00:00.184

0.0

F检验和互信息的比较 (../examples/feature_selection/plot_f_test_vs_mi.py)

00:00.184

0.0

使用多任务Lasso进行联合特征选择 (../examples/linear_model/plot_multi_task_lasso_support.py)

00:00.180

0.0

鸢尾花数据集的LDA和PCA 2D投影比较 (../examples/decomposition/plot_pca_vs_lda.py)

00:00.174

0.0

最近邻回归 (../examples/neighbors/plot_regression.py)

00:00.173

0.0

检测错误权衡 (DET) 曲线 (../examples/model_selection/plot_det.py)

00:00.168

0.0

在鸢尾花数据集上绘制不同的SVM分类器 (../examples/svm/plot_iris_svc.py)

00:00.166

0.0

离散数据结构上的高斯过程 (../examples/gaussian_process/plot_gpr_on_structured_data.py)

00:00.165

0.0

GMM协方差 (../examples/mixture/plot_gmm_covariances.py)

00:00.165

0.0

K-Means和MiniBatchKMeans聚类算法比较 (../examples/cluster/plot_mini_batch_kmeans.py)

00:00.164

0.0

欠拟合与过拟合 (../examples/model_selection/plot_underfitting_overfitting.py)

00:00.162

0.0

绘制交叉验证预测 (../examples/model_selection/plot_cv_predict.py)

00:00.160

0.0

比较交叉分解方法 (../examples/cross_decomposition/plot_compare_cross_decomposition.py)

00:00.159

0.0

多标签分类 (../examples/miscellaneous/plot_multilabel.py)

00:00.154

0.0

多维缩放 (../examples/manifold/plot_mds.py)

00:00.151

0.0

单变量特征选择 (../examples/feature_selection/plot_feature_selection.py)

00:00.148

0.0

使用可视化API绘制ROC曲线 (../examples/miscellaneous/plot_roc_curve_visualization_api.py)

00:00.146

0.0

在LinearSVC中绘制支持向量 (../examples/svm/plot_linearsvc_support_vectors.py)

00:00.146

0.0

比较带和不带邻域成分分析的最近邻 (../examples/neighbors/plot_nca_classification.py)

00:00.144

0.0

set_output API介绍 (../examples/miscellaneous/plot_set_output.py)

00:00.143

0.0

SVM:非平衡类别的分离超平面 (../examples/svm/plot_separating_hyperplane_unbalanced.py)

00:00.142

0.0

DBSCAN聚类算法演示 (../examples/cluster/plot_dbscan.py)

00:00.138

0.0

L1-逻辑回归的正则化路径 (../examples/linear_model/plot_logistic_path.py)

00:00.138

0.0

显示管道 (../examples/miscellaneous/plot_pipeline_display.py)

00:00.134

0.0

scikit-learn 1.7版本亮点 (../examples/release_highlights/plot_release_highlights_1_7_0.py)

00:00.131

0.0

标签传播圆环:学习复杂结构 (../examples/semi_supervised/plot_label_propagation_structure.py)

00:00.128

0.0

最近质心分类 (../examples/neighbors/plot_nearest_centroid.py)

00:00.123

0.0

邻域成分分析图示 (../examples/neighbors/plot_nca_illustration.py)

00:00.120

0.0

等渗回归 (../examples/miscellaneous/plot_isotonic_regression.py)

00:00.119

0.0

带非线性核 (RBF) 的单类别SVM (../examples/svm/plot_oneclass.py)

00:00.114

0.0

高斯过程分类 (GPC) 的等概率线 (../examples/gaussian_process/plot_gpc_isoprobability.py)

00:00.112

0.0

绘制随机生成的多标签数据集 (../examples/datasets/plot_random_multilabel_dataset.py)

00:00.110

0.0

HuberRegressor vs Ridge 在具有强异常值的数据集上 (../examples/linear_model/plot_huber_vs_ridge.py)

00:00.103

0.0

特征聚类 (../examples/cluster/plot_digits_agglomeration.py)

00:00.101

0.0

高斯混合模型的密度估计 (../examples/mixture/plot_gmm_pdf.py)

00:00.099

0.0

scikit-learn 1.6 版本亮点 (../examples/release_highlights/plot_release_highlights_1_6_0.py)

00:00.098

0.0

在 iris 数据集上绘制多类别 SGD (../examples/linear_model/plot_sgd_iris.py)

00:00.094

0.0

通过信息准则进行 Lasso 模型选择 (../examples/linear_model/plot_lasso_lars_ic.py)

00:00.080

0.0

SGD:凸损失函数 (../examples/linear_model/plot_sgd_loss_functions.py)

00:00.080

0.0

使用 RANSAC 进行鲁棒线性模型估计 (../examples/linear_model/plot_ransac.py)

00:00.076

0.0

理解决策树结构 (../examples/tree/plot_unveil_tree_structure.py)

00:00.075

0.0

带有自定义核函数的 SVM (../examples/svm/plot_custom_kernel.py)

00:00.074

0.0

绘制层次聚类树状图 (../examples/cluster/plot_agglomerative_dendrogram.py)

00:00.071

0.0

使用局部异常因子 (LOF) 进行异常值检测 (../examples/neighbors/plot_lof_outlier_detection.py)

00:00.064

0.0

SGD:加权样本 (../examples/linear_model/plot_sgd_weighted_samples.py)

00:00.061

0.0

SGD:最大间隔分离超平面 (../examples/linear_model/plot_sgd_separating_hyperplane.py)

00:00.055

0.0

非负最小二乘法 (../examples/linear_model/plot_nnls.py)

00:00.052

0.0

SVM:最大间隔分离超平面 (../examples/svm/plot_separating_hyperplane.py)

00:00.051

0.0

SVM 间隔示例 (../examples/svm/plot_svm_margin.py)

00:00.050

0.0

元数据路由 (../examples/miscellaneous/plot_metadata_routing.py)

00:00.049

0.0

K-Means++ 初始化示例 (../examples/cluster/plot_kmeans_plusplus.py)

00:00.048

0.0

显示估计器和复杂管道 (../examples/miscellaneous/plot_estimator_representation.py)

00:00.027

0.0

使用 FrozenEstimator 的示例 (../examples/frozen/plot_frozen_examples.py)

00:00.016

0.0

管道 ANOVA SVM (../examples/feature_selection/plot_feature_selection_pipeline.py)

00:00.014

0.0

scikit-learn 1.0 版本亮点 (../examples/release_highlights/plot_release_highlights_1_0_0.py)

00:00.014

0.0

维基百科主特征向量 (../examples/applications/wikipedia_principal_eigenvector.py)

00:00.000

0.0

__sklearn_is_fitted__ 作为开发者 API (../examples/developing_estimators/sklearn_is_fitted.py)

00:00.000

0.0

TSNE 中的近似最近邻 (../examples/neighbors/approximate_nearest_neighbors.py)

00:00.000

0.0