cluster_optics_dbscan#
- sklearn.cluster.cluster_optics_dbscan(*, reachability, core_distances, ordering, eps)[source]#
- 对任意epsilon执行DBSCAN提取。 - 提取集群运行时间为线性时间。请注意,这会导致 - labels_接近具有相似设置和- eps的- DBSCAN,只有当- eps接近- max_eps时才如此。- 参数:
- reachabilityndarray of shape (n_samples,)
- 由OPTICS计算的可达距离( - reachability_)。
- core_distancesndarray of shape (n_samples,)
- 点变成核心点的距离( - core_distances_)。
- orderingndarray of shape (n_samples,)
- OPTICS排序后的点索引( - ordering_)。
- epsfloat
- DBSCAN 的 - eps参数。必须设置为小于- max_eps。如果- eps和- max_eps彼此接近,则结果将接近 DBSCAN 算法。
 
- 返回值:
- labels_形状为 (n_samples,) 的数组
- 估计的标签。 
 
 - 示例 - >>> import numpy as np >>> from sklearn.cluster import cluster_optics_dbscan, compute_optics_graph >>> X = np.array([[1, 2], [2, 5], [3, 6], ... [8, 7], [8, 8], [7, 3]]) >>> ordering, core_distances, reachability, predecessor = compute_optics_graph( ... X, ... min_samples=2, ... max_eps=np.inf, ... metric="minkowski", ... p=2, ... metric_params=None, ... algorithm="auto", ... leaf_size=30, ... n_jobs=None, ... ) >>> eps = 4.5 >>> labels = cluster_optics_dbscan( ... reachability=reachability, ... core_distances=core_distances, ... ordering=ordering, ... eps=eps, ... ) >>> labels array([0, 0, 0, 1, 1, 1]) 
 
    