OneToOneFeatureMixin#
- class sklearn.base.OneToOneFeatureMixin[源码]#
为简单的转换器提供
get_feature_names_out
方法。此混合器假设输入特征和输出特征之间存在一对一对应关系,例如
StandardScaler
。示例
>>> import numpy as np >>> from sklearn.base import OneToOneFeatureMixin, BaseEstimator >>> class MyEstimator(OneToOneFeatureMixin, BaseEstimator): ... def fit(self, X, y=None): ... self.n_features_in_ = X.shape[1] ... return self >>> X = np.array([[1, 2], [3, 4]]) >>> MyEstimator().fit(X).get_feature_names_out() array(['x0', 'x1'], dtype=object)
- get_feature_names_out(input_features=None)[源码]#
获取用于转换的输出特征名称。
- 参数:
- input_features类似数组的字符串或 None,默认值为 None
输入特征。
如果
input_features
为None
,则feature_names_in_
将用作输入特征名称。如果未定义feature_names_in_
,则生成以下输入特征名称:["x0", "x1", ..., "x(n_features_in_ - 1)"]
。如果
input_features
是类似数组的,则如果定义了feature_names_in_
,input_features
必须与其匹配。
- 返回:
- feature_names_outstr 对象组成的 ndarray
与输入特征相同。