ClassNamePrefixFeaturesOutMixin#
- class sklearn.base.ClassNamePrefixFeaturesOutMixin[source]#
Mixin 类,用于通过添加前缀生成名称的转换器。
当转换器需要生成自己的输出特征名称时,此 mixin 非常有用,例如
PCA。例如,如果PCA输出 3 个特征,则生成的输出特征名称为:["pca0", "pca1", "pca2"]。此 mixin 假设在拟合转换器时定义了
_n_features_out属性。_n_features_out是转换器将在transform或fit_transform中返回的输出特征数量。示例
>>> import numpy as np >>> from sklearn.base import ClassNamePrefixFeaturesOutMixin, BaseEstimator >>> class MyEstimator(ClassNamePrefixFeaturesOutMixin, BaseEstimator): ... def fit(self, X, y=None): ... self._n_features_out = X.shape[1] ... return self >>> X = np.array([[1, 2], [3, 4]]) >>> MyEstimator().fit(X).get_feature_names_out() array(['myestimator0', 'myestimator1'], dtype=object)
- get_feature_names_out(input_features=None)[source]#
获取转换的输出特征名称。
The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are:
["class_name0", "class_name1", "class_name2"].- 参数:
- input_featuresarray-like of str or None, default=None
Only used to validate feature names with the names seen in
fit.
- 返回:
- feature_names_outstr 对象的 ndarray
转换后的特征名称。