cluster_optics_dbscan#
- sklearn.cluster.cluster_optics_dbscan(*, reachability, core_distances, ordering, eps)[source]#
为任意 epsilon 执行 DBSCAN 提取。
提取簇需要线性时间。请注意,只有当
eps接近max_eps时,结果labels_才接近于使用类似设置和eps的DBSCAN。- 参数:
- reachabilityndarray of shape (n_samples,)
由 OPTICS 计算的可达性距离 (
reachability_)。- core_distancesndarray of shape (n_samples,)
点成为核心的距离 (
core_distances_)。- orderingndarray of shape (n_samples,)
OPTICS 排序的点索引 (
ordering_)。- epsfloat
DBSCAN
eps参数。必须设置为 <max_eps。如果eps和max_eps彼此接近,则结果将接近 DBSCAN 算法。
- 返回:
- labels_array of shape (n_samples,)
估计的标签。
示例
>>> import numpy as np >>> from sklearn.cluster import cluster_optics_dbscan, compute_optics_graph >>> X = np.array([[1, 2], [2, 5], [3, 6], ... [8, 7], [8, 8], [7, 3]]) >>> ordering, core_distances, reachability, predecessor = compute_optics_graph( ... X, ... min_samples=2, ... max_eps=np.inf, ... metric="minkowski", ... p=2, ... metric_params=None, ... algorithm="auto", ... leaf_size=30, ... n_jobs=None, ... ) >>> eps = 4.5 >>> labels = cluster_optics_dbscan( ... reachability=reachability, ... core_distances=core_distances, ... ordering=ordering, ... eps=eps, ... ) >>> labels array([0, 0, 0, 1, 1, 1])