产品#
- class sklearn.gaussian_process.kernels.Product(k1, k2)[source]#
Product核函数接受两个核函数 \(k_1\) 和 \(k_2\) 并通过以下方式将它们组合:\[k_{prod}(X, Y) = k_1(X, Y) * k_2(X, Y)\]请注意,
__mul__魔术方法已被重写,因此Product(RBF(), RBF())等同于使用 * 运算符的RBF() * RBF()。在 用户指南 中阅读更多内容。
版本 0.18 新增。
- 参数:
- k1Kernel
乘积核函数的第一个基础核函数
- k2Kernel
乘积核函数的第二个基础核函数
示例
>>> from sklearn.datasets import make_friedman2 >>> from sklearn.gaussian_process import GaussianProcessRegressor >>> from sklearn.gaussian_process.kernels import (RBF, Product, ... ConstantKernel) >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0) >>> kernel = Product(ConstantKernel(2), RBF()) >>> gpr = GaussianProcessRegressor(kernel=kernel, ... random_state=0).fit(X, y) >>> gpr.score(X, y) 1.0 >>> kernel 1.41**2 * RBF(length_scale=1)
- __call__(X, Y=None, eval_gradient=False)[source]#
返回核 k(X, Y) 及其可选的梯度。
- 参数:
- Xarray-like of shape (n_samples_X, n_features) or list of object
返回的核 k(X, Y) 的左参数
- Yarray-like of shape (n_samples_Y, n_features) or list of object, default=None
返回核 k(X, Y) 的右参数。如果为 None,则计算 k(X, X)。
- eval_gradientbool, default=False
确定是否计算关于核超参数对数的梯度。
- 返回:
- Kndarray of shape (n_samples_X, n_samples_Y)
核 k(X, Y)
- K_gradientndarray of shape (n_samples_X, n_samples_X, n_dims), optional
核 k(X, X) 关于核超参数对数的梯度。仅当
eval_gradient为 True 时返回。
- property bounds#
返回 theta 的对数变换边界。
- 返回:
- boundsndarray of shape (n_dims, 2)
核超参数 theta 的对数变换边界
- diag(X)[source]#
返回核 k(X, X) 的对角线。
此方法的结果与 np.diag(self(X)) 相同;然而,由于只评估对角线,它可以更有效地评估。
- 参数:
- Xarray-like of shape (n_samples_X, n_features) or list of object
核的参数。
- 返回:
- K_diagndarray of shape (n_samples_X,)
核 k(X, X) 的对角线
- get_params(deep=True)[source]#
获取此核的参数。
- 参数:
- deepbool, default=True
如果为 True,将返回此估计器以及包含的子对象(如果它们是估计器)的参数。
- 返回:
- paramsdict
参数名称映射到其值。
- property hyperparameters#
返回所有超参数的列表。
- property n_dims#
返回核的非固定超参数的数量。
- property requires_vector_input#
返回核是否平稳。
- set_params(**params)[source]#
设置此核的参数。
此方法适用于简单核以及嵌套核。后者具有
<component>__<parameter>形式的参数,因此可以更新嵌套对象的每个组件。- 返回:
- self
- property theta#
返回(展平的、对数变换的)非固定超参数。
请注意,theta 通常是核超参数的对数变换值,因为这种搜索空间的表示形式更适合超参数搜索,因为像长度尺度这样的超参数自然存在于对数尺度上。
- 返回:
- thetandarray of shape (n_dims,)
核的非固定、对数变换超参数