VarianceThreshold#

class sklearn.feature_selection.VarianceThreshold(threshold=0.0)[source]#

移除所有低方差特征的特征选择器。

此特征选择算法仅查看特征 (X),而不查看所需输出 (y),因此可用于无监督学习。

用户指南中阅读更多内容。

参数:
thresholdfloat, default=0

训练集方差低于此阈值的特征将被移除。默认值是保留所有非零方差的特征,即移除在所有样本中具有相同值的特征。

属性:
variances_array, shape (n_features,)

单个特征的方差。

n_features_in_int

拟合 期间看到的特征数。

0.24 版本新增。

feature_names_in_shape 为 (n_features_in_,) 的 ndarray

fit 期间看到的特征名称。仅当 X 具有全部为字符串的特征名称时才定义。

1.0 版本新增。

另请参阅

SelectFromModel

基于重要性权重选择特征的元转换器。

SelectPercentile

根据最高分数的百分位数选择特征。

SequentialFeatureSelector

执行顺序特征选择的转换器。

注意事项

允许输入中包含 NaN。如果 X 中没有特征符合方差阈值,则会引发 ValueError。

示例

以下数据集具有整数特征,其中两个在每个样本中都相同。这些特征将使用默认的阈值设置被移除。

>>> from sklearn.feature_selection import VarianceThreshold
>>> X = [[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]]
>>> selector = VarianceThreshold()
>>> selector.fit_transform(X)
array([[2, 0],
       [1, 4],
       [1, 1]])
fit(X, y=None)[source]#

从 X 中学习经验方差。

参数:
X{array-like, sparse matrix}, shape (n_samples, n_features)

用于计算方差的数据,其中 n_samples 是样本数,n_features 是特征数。

yany, default=None

被忽略。此参数仅用于与 sklearn.pipeline.Pipeline 兼容。

返回:
selfobject

返回实例本身。

fit_transform(X, y=None, **fit_params)[source]#

拟合数据,然后对其进行转换。

使用可选参数 fit_params 将转换器拟合到 Xy,并返回 X 的转换版本。

参数:
Xshape 为 (n_samples, n_features) 的 array-like

输入样本。

y形状为 (n_samples,) 或 (n_samples, n_outputs) 的类数组对象,默认=None

目标值(对于无监督转换,为 None)。

**fit_paramsdict

额外的拟合参数。仅当估计器在其 fit 方法中接受额外的参数时才传递。

返回:
X_newndarray array of shape (n_samples, n_features_new)

转换后的数组。

get_feature_names_out(input_features=None)[source]#

根据所选特征屏蔽特征名称。

参数:
input_featuresarray-like of str or None, default=None

输入特征。

  • 如果 input_featuresNone,则使用 feature_names_in_ 作为输入特征名称。如果 feature_names_in_ 未定义,则生成以下输入特征名称:["x0", "x1", ..., "x(n_features_in_ - 1)"]

  • 如果 input_features 是 array-like,则如果定义了 feature_names_in_input_features 必须与 feature_names_in_ 匹配。

返回:
feature_names_outstr 对象的 ndarray

转换后的特征名称。

get_metadata_routing()[source]#

获取此对象的元数据路由。

请查阅 用户指南,了解路由机制如何工作。

返回:
routingMetadataRequest

封装路由信息的 MetadataRequest

get_params(deep=True)[source]#

获取此估计器的参数。

参数:
deepbool, default=True

如果为 True,将返回此估计器以及包含的子对象(如果它们是估计器)的参数。

返回:
paramsdict

参数名称映射到其值。

get_support(indices=False)[source]#

获取所选特征的掩码或整数索引。

参数:
indicesbool, default=False

如果为 True,返回值将是一个整数数组,而不是布尔掩码。

返回:
supportarray

从特征向量中选择保留特征的索引。如果 indices 为 False,则这是一个形状为 [# input features] 的布尔数组,其中元素为 True 当且仅当其对应的特征被选中保留。如果 indices 为 True,则这是一个形状为 [# output features] 的整数数组,其值是输入特征向量中的索引。

inverse_transform(X)[source]#

反转转换操作。

参数:
Xarray of shape [n_samples, n_selected_features]

输入样本。

返回:
X_originalarray of shape [n_samples, n_original_features]

X,其中在被 transform 移除的特征位置插入了零列。

set_output(*, transform=None)[source]#

设置输出容器。

有关如何使用 API 的示例,请参阅引入 set_output API

参数:
transform{“default”, “pandas”, “polars”}, default=None

配置 transformfit_transform 的输出。

  • "default": 转换器的默认输出格式

  • "pandas": DataFrame 输出

  • "polars": Polars 输出

  • None: 转换配置保持不变

1.4 版本新增: 添加了 "polars" 选项。

返回:
selfestimator instance

估计器实例。

set_params(**params)[source]#

设置此估计器的参数。

此方法适用于简单的估计器以及嵌套对象(如 Pipeline)。后者具有 <component>__<parameter> 形式的参数,以便可以更新嵌套对象的每个组件。

参数:
**paramsdict

估计器参数。

返回:
selfestimator instance

估计器实例。

transform(X)[source]#

将 X 减少到所选特征。

参数:
Xarray of shape [n_samples, n_features]

输入样本。

返回:
X_rarray of shape [n_samples, n_selected_features]

仅包含所选特征的输入样本。