Perceptron#

class sklearn.linear_model.Perceptron(*, penalty=None, alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=0.001, shuffle=True, verbose=0, eta0=1.0, n_jobs=None, random_state=0, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, class_weight=None, warm_start=False)[source]#

线性感知器分类器。

此实现是 SGDClassifier 的一个封装,通过固定 losslearning_rate 参数来实现

SGDClassifier(loss="perceptron", learning_rate="constant")

其他可用的参数在下面描述,并转发给 SGDClassifier

User Guide 中阅读更多内容。

参数:
penalty{‘l2’,’l1’,’elasticnet’}, default=None

要使用的惩罚项(也称为正则化项)。

alphafloat, default=0.0001

如果使用正则化,则此常量乘以正则化项。

l1_ratiofloat, default=0.15

弹性网络混合参数,其中 0 <= l1_ratio <= 1l1_ratio=0 对应于 L2 惩罚项,l1_ratio=1 对应于 L1 惩罚项。仅当 penalty='elasticnet' 时使用。

0.24 版本新增。

fit_interceptbool, default=True

Whether the intercept should be estimated or not. If False, the data is assumed to be already centered.

max_iterint, default=1000

在训练数据上的最大迭代次数(又称 epoch)。它只影响 fit 方法的行为,而不影响 partial_fit 方法。

Added in version 0.19.

tolfloat or None, default=1e-3

The stopping criterion. If it is not None, the iterations will stop when (loss > previous_loss - tol).

Added in version 0.19.

shufflebool, default=True

Whether or not the training data should be shuffled after each epoch.

verboseint, default=0

详细程度。

eta0float, default=1

更新所乘的常数。

n_jobsint, default=None

用于执行 OVA(一对多,针对多类别问题)计算的 CPU 数量。除非在 joblib.parallel_backend 上下文中,None 表示 1。-1 表示使用所有处理器。有关更多详细信息,请参阅词汇表

random_stateint, RandomState instance or None, default=0

Used to shuffle the training data, when shuffle is set to True. Pass an int for reproducible output across multiple function calls. See Glossary.

early_stoppingbool, default=False

是否使用早停来终止训练,当验证分数没有提高时。如果设置为 True,它将自动留出分层比例的训练数据作为验证集,当验证分数在连续 n_iter_no_change 个 epoch 中没有提高至少 tol 时,终止训练。

0.20 版本新增。

validation_fractionfloat, default=0.1

The proportion of training data to set aside as validation set for early stopping. Must be between 0 and 1. Only used if early_stopping is True.

0.20 版本新增。

n_iter_no_changeint, default=5

Number of iterations with no improvement to wait before early stopping.

0.20 版本新增。

class_weightdict, {class_label: weight} or “balanced”, default=None

class_weight fit 参数的预设。

与类别相关的权重。如果未给出,则假定所有类别的权重均为 1。

“balanced” 模式使用 y 的值根据输入数据中与类频率成反比的权重自动调整权重,计算公式为 n_samples / (n_classes * np.bincount(y))

warm_startbool, default=False

When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. See the Glossary.

属性:
classes_ndarray of shape (n_classes,)

唯一的类别标签。

coef_ndarray of shape (1, n_features) if n_classes == 2 else (n_classes, n_features)

Weights assigned to the features.

intercept_ndarray of shape (1,) if n_classes == 2 else (n_classes,)

决策函数中的常数。

n_features_in_int

拟合 期间看到的特征数。

0.24 版本新增。

feature_names_in_shape 为 (n_features_in_,) 的 ndarray

fit 期间看到的特征名称。仅当 X 具有全部为字符串的特征名称时才定义。

1.0 版本新增。

n_iter_int

达到停止标准的实际迭代次数。对于多类别拟合,它是每个二元拟合的最大值。

t_int

Number of weight updates performed during training. Same as (n_iter_ * n_samples + 1).

另请参阅

sklearn.linear_model.SGDClassifier

具有 SGD 训练的线性分类器(SVM、logistic 回归等)。

注意事项

Perceptron 是一种分类算法,与 SGDClassifier 共享相同的底层实现。实际上,Perceptron() 等同于 SGDClassifier(loss="perceptron", eta0=1, learning_rate="constant", penalty=None)

References

https://en.wikipedia.org/wiki/Perceptron 及其中的参考文献。

示例

>>> from sklearn.datasets import load_digits
>>> from sklearn.linear_model import Perceptron
>>> X, y = load_digits(return_X_y=True)
>>> clf = Perceptron(tol=1e-3, random_state=0)
>>> clf.fit(X, y)
Perceptron()
>>> clf.score(X, y)
0.939...
decision_function(X)[source]#

预测样本的置信度得分。

样本的置信度得分与该样本到超平面的有符号距离成比例。

参数:
Xshape 为 (n_samples, n_features) 的 {array-like, sparse matrix}

我们想要获取置信度得分的数据矩阵。

返回:
scoresndarray of shape (n_samples,) or (n_samples, n_classes)

每个 (n_samples, n_classes) 组合的置信度得分。在二元情况下,self.classes_[1] 的置信度得分大于 0 意味着将预测此类。

densify()[source]#

Convert coefficient matrix to dense array format.

Converts the coef_ member (back) to a numpy.ndarray. This is the default format of coef_ and is required for fitting, so calling this method is only required on models that have previously been sparsified; otherwise, it is a no-op.

返回:
self

拟合的估计器。

fit(X, y, coef_init=None, intercept_init=None, sample_weight=None)[source]#

Fit linear model with Stochastic Gradient Descent.

参数:
X{array-like, sparse matrix}, shape (n_samples, n_features)

训练数据。

yndarray of shape (n_samples,)

目标值。

coef_initndarray of shape (n_classes, n_features), default=None

The initial coefficients to warm-start the optimization.

intercept_initndarray of shape (n_classes,), default=None

The initial intercept to warm-start the optimization.

sample_weightarray-like, shape (n_samples,), default=None

应用于单个样本的权重。如果未提供,则假定均匀权重。如果指定了 class_weight(通过构造函数传入),这些权重将与 class_weight 相乘。

返回:
selfobject

Returns an instance of self.

get_metadata_routing()[source]#

获取此对象的元数据路由。

请查阅 用户指南,了解路由机制如何工作。

返回:
routingMetadataRequest

封装路由信息的 MetadataRequest

get_params(deep=True)[source]#

获取此估计器的参数。

参数:
deepbool, default=True

如果为 True,将返回此估计器以及包含的子对象(如果它们是估计器)的参数。

返回:
paramsdict

参数名称映射到其值。

partial_fit(X, y, classes=None, sample_weight=None)[source]#

Perform one epoch of stochastic gradient descent on given samples.

在内部,此方法使用 max_iter = 1。因此,不能保证在调用一次后达到成本函数的最小值。诸如目标收敛、早停和学习率调整之类的事情应由用户处理。

参数:
X{array-like, sparse matrix}, shape (n_samples, n_features)

训练数据的子集。

yndarray of shape (n_samples,)

目标值的子集。

classesndarray of shape (n_classes,), default=None

对 partial_fit 的所有调用中的类别。可以通过 np.unique(y_all) 获得,其中 y_all 是整个数据集的目标向量。此参数在第一次调用 partial_fit 时是必需的,在后续调用中可以省略。请注意,y 不需要包含 classes 中的所有标签。

sample_weightarray-like, shape (n_samples,), default=None

Weights applied to individual samples. If not provided, uniform weights are assumed.

返回:
selfobject

Returns an instance of self.

predict(X)[source]#

预测 X 中样本的类标签。

参数:
Xshape 为 (n_samples, n_features) 的 {array-like, sparse matrix}

我们要获取预测值的数据矩阵。

返回:
y_pred形状为 (n_samples,) 的 ndarray

包含每个样本的类标签的向量。

score(X, y, sample_weight=None)[source]#

返回在提供的数据和标签上的 准确率 (accuracy)

在多标签分类中,这是子集准确率 (subset accuracy),这是一个严格的指标,因为它要求每个样本的每个标签集都被正确预测。

参数:
Xshape 为 (n_samples, n_features) 的 array-like

测试样本。

yshape 为 (n_samples,) 或 (n_samples, n_outputs) 的 array-like

X 的真实标签。

sample_weightshape 为 (n_samples,) 的 array-like, default=None

样本权重。

返回:
scorefloat

self.predict(X) 相对于 y 的平均准确率。

set_fit_request(*, coef_init: bool | None | str = '$UNCHANGED$', intercept_init: bool | None | str = '$UNCHANGED$', sample_weight: bool | None | str = '$UNCHANGED$') Perceptron[source]#

配置是否应请求元数据以传递给 fit 方法。

请注意,此方法仅在以下情况下相关:此估计器用作 元估计器 中的子估计器,并且通过 enable_metadata_routing=True 启用了元数据路由(请参阅 sklearn.set_config)。请查看 用户指南 以了解路由机制的工作原理。

每个参数的选项如下:

  • True:请求元数据,如果提供则传递给 fit。如果未提供元数据,则忽略该请求。

  • False:不请求元数据,元估计器不会将其传递给 fit

  • None:不请求元数据,如果用户提供元数据,元估计器将引发错误。

  • str:应将元数据以给定别名而不是原始名称传递给元估计器。

默认值 (sklearn.utils.metadata_routing.UNCHANGED) 保留现有请求。这允许您更改某些参数的请求而不更改其他参数。

在版本 1.3 中新增。

参数:
coef_initstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for coef_init parameter in fit.

intercept_initstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for intercept_init parameter in fit.

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

fit 方法中 sample_weight 参数的元数据路由。

返回:
selfobject

更新后的对象。

set_params(**params)[source]#

设置此估计器的参数。

此方法适用于简单的估计器以及嵌套对象(如 Pipeline)。后者具有 <component>__<parameter> 形式的参数,以便可以更新嵌套对象的每个组件。

参数:
**paramsdict

估计器参数。

返回:
selfestimator instance

估计器实例。

set_partial_fit_request(*, classes: bool | None | str = '$UNCHANGED$', sample_weight: bool | None | str = '$UNCHANGED$') Perceptron[source]#

Configure whether metadata should be requested to be passed to the partial_fit method.

请注意,此方法仅在以下情况下相关:此估计器用作 元估计器 中的子估计器,并且通过 enable_metadata_routing=True 启用了元数据路由(请参阅 sklearn.set_config)。请查看 用户指南 以了解路由机制的工作原理。

每个参数的选项如下:

  • True: metadata is requested, and passed to partial_fit if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to partial_fit.

  • None:不请求元数据,如果用户提供元数据,元估计器将引发错误。

  • str:应将元数据以给定别名而不是原始名称传递给元估计器。

默认值 (sklearn.utils.metadata_routing.UNCHANGED) 保留现有请求。这允许您更改某些参数的请求而不更改其他参数。

在版本 1.3 中新增。

参数:
classesstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

用于 partial_fitclasses 参数的元数据路由。

sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

Metadata routing for sample_weight parameter in partial_fit.

返回:
selfobject

更新后的对象。

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Perceptron[source]#

配置是否应请求元数据以传递给 score 方法。

请注意,此方法仅在以下情况下相关:此估计器用作 元估计器 中的子估计器,并且通过 enable_metadata_routing=True 启用了元数据路由(请参阅 sklearn.set_config)。请查看 用户指南 以了解路由机制的工作原理。

每个参数的选项如下:

  • True:请求元数据,如果提供则传递给 score。如果未提供元数据,则忽略该请求。

  • False:不请求元数据,元估计器不会将其传递给 score

  • None:不请求元数据,如果用户提供元数据,元估计器将引发错误。

  • str:应将元数据以给定别名而不是原始名称传递给元估计器。

默认值 (sklearn.utils.metadata_routing.UNCHANGED) 保留现有请求。这允许您更改某些参数的请求而不更改其他参数。

在版本 1.3 中新增。

参数:
sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED

score 方法中 sample_weight 参数的元数据路由。

返回:
selfobject

更新后的对象。

sparsify()[source]#

Convert coefficient matrix to sparse format.

Converts the coef_ member to a scipy.sparse matrix, which for L1-regularized models can be much more memory- and storage-efficient than the usual numpy.ndarray representation.

The intercept_ member is not converted.

返回:
self

拟合的估计器。

注意事项

For non-sparse models, i.e. when there are not many zeros in coef_, this may actually increase memory usage, so use this method with care. A rule of thumb is that the number of zero elements, which can be computed with (coef_ == 0).sum(), must be more than 50% for this to provide significant benefits.

After calling this method, further fitting with the partial_fit method (if any) will not work until you call densify.