mean_tweedie_deviance#
- sklearn.metrics.mean_tweedie_deviance(y_true, y_pred, *, sample_weight=None, power=0)[source]#
平均 Tweedie 偏差回归损失。
在用户指南中了解更多信息。
- 参数:
- y_true形状为 (n_samples,) 的 array-like
真实(正确)的目标值。
- y_pred形状为 (n_samples,) 的类数组
估计的目标值。
- sample_weightshape 为 (n_samples,) 的 array-like, default=None
样本权重。
- powerfloat, default=0
Tweedie power parameter. Either power <= 0 or power >= 1.
The higher
pthe less weight is given to extreme deviations between true and predicted targets.power < 0: Extreme stable distribution. Requires: y_pred > 0.
power = 0 : Normal distribution, output corresponds to mean_squared_error. y_true and y_pred can be any real numbers.
power = 1 : Poisson distribution. Requires: y_true >= 0 and y_pred > 0.
1 < p < 2 : Compound Poisson distribution. Requires: y_true >= 0 and y_pred > 0.
power = 2 : Gamma distribution. Requires: y_true > 0 and y_pred > 0.
power = 3 : Inverse Gaussian distribution. Requires: y_true > 0 and y_pred > 0.
otherwise : Positive stable distribution. Requires: y_true > 0 and y_pred > 0.
- 返回:
- loss浮点数
一个非负浮点值(最佳值为 0.0)。
示例
>>> from sklearn.metrics import mean_tweedie_deviance >>> y_true = [2, 0, 1, 4] >>> y_pred = [0.5, 0.5, 2., 2.] >>> mean_tweedie_deviance(y_true, y_pred, power=1) 1.4260...