load_wine#

sklearn.datasets.load_wine(*, return_X_y=False, as_frame=False)[source]#

加载并返回葡萄酒数据集(分类)。

版本 0.18 新增。

The wine dataset is a classic and very easy multi-class classification dataset.

类别数

3

每类的样本数

[59,71,48]

样本总数

178

维度

13

特征值范围

real, positive

The copy of UCI ML Wine Data Set dataset is downloaded and modified to fit standard format from: https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

Read more in the User Guide.

参数:
return_X_ybool, default=False

如果为 True,则返回 (data, target) 而不是 Bunch 对象。有关 datatarget 对象的更多信息,请参阅下文。

as_framebool, default=False

如果为 True,则数据是包含具有相应 dtypes(数字)的列的 pandas DataFrame。目标是 pandas DataFrame 或 Series,具体取决于目标列数。如果 return_X_y 为 True,则 (data, target) 将是如下所述的 pandas DataFrames 或 Series。

0.23 版本新增。

返回:
dataBunch

Dictionary-like object, with the following attributes.

data{ndarray, dataframe} of shape (178, 13)

数据矩阵。如果 as_frame=Truedata 将是一个 pandas DataFrame。

target: {ndarray, Series} of shape (178,)

分类目标。如果 as_frame=Truetarget 将是一个 pandas Series。

feature_names: list

数据集列的名称。

target_names: list

The names of target classes.

frame: DataFrame of shape (178, 14)

仅当 as_frame=True 时存在。包含 datatarget 的 DataFrame。

0.23 版本新增。

DESCR: str

The full description of the dataset.

(data, target)tuple if return_X_y is True

A tuple of two ndarrays by default. The first contains a 2D array of shape (178, 13) with each row representing one sample and each column representing the features. The second array of shape (178,) contains the target samples.

示例

Let’s say you are interested in the samples 10, 80, and 140, and want to know their class name.

>>> from sklearn.datasets import load_wine
>>> data = load_wine()
>>> data.target[[10, 80, 140]]
array([0, 1, 2])
>>> list(data.target_names)
[np.str_('class_0'), np.str_('class_1'), np.str_('class_2')]