注意
转到结尾 下载完整的示例代码,或通过JupyterLite或Binder在浏览器中运行此示例
二分K均值和常规K均值性能比较#
此示例展示了常规K均值算法和二分K均值算法之间的差异。
当增加n_clusters时,K均值聚类结果不同,而二分K均值聚类建立在之前的聚类之上。因此,它倾向于创建具有更规则的大规模结构的聚类。这种差异可以直观地观察到:对于所有数量的聚类,对于二分K均值,存在一条分割线将整体数据云分成两部分,而对于常规K均值则不存在。
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import matplotlib.pyplot as plt
from sklearn.cluster import BisectingKMeans, KMeans
from sklearn.datasets import make_blobs
print(__doc__)
# Generate sample data
n_samples = 10000
random_state = 0
X, _ = make_blobs(n_samples=n_samples, centers=2, random_state=random_state)
# Number of cluster centers for KMeans and BisectingKMeans
n_clusters_list = [4, 8, 16]
# Algorithms to compare
clustering_algorithms = {
"Bisecting K-Means": BisectingKMeans,
"K-Means": KMeans,
}
# Make subplots for each variant
fig, axs = plt.subplots(
len(clustering_algorithms), len(n_clusters_list), figsize=(12, 5)
)
axs = axs.T
for i, (algorithm_name, Algorithm) in enumerate(clustering_algorithms.items()):
for j, n_clusters in enumerate(n_clusters_list):
algo = Algorithm(n_clusters=n_clusters, random_state=random_state, n_init=3)
algo.fit(X)
centers = algo.cluster_centers_
axs[j, i].scatter(X[:, 0], X[:, 1], s=10, c=algo.labels_)
axs[j, i].scatter(centers[:, 0], centers[:, 1], c="r", s=20)
axs[j, i].set_title(f"{algorithm_name} : {n_clusters} clusters")
# Hide x labels and tick labels for top plots and y ticks for right plots.
for ax in axs.flat:
ax.label_outer()
ax.set_xticks([])
ax.set_yticks([])
plt.show()
脚本总运行时间:(0分钟1.086秒)
相关示例
K 均值假设的演示
比较 K 均值和 MiniBatchKMeans 聚类算法
K-Means++ 初始化示例
K 均值初始化影响的经验评估