RBF 核的显式特征映射近似#

一个说明 RBF 核的特征映射近似的示例。

本文展示了如何使用RBFSamplerNystroem 来近似RBF核的特征映射,用于基于数字数据集的SVM分类。我们将比较在原始空间中使用线性SVM、使用近似映射的线性SVM以及使用核化SVM的结果。文中展示了不同数量的蒙特卡洛采样(对于使用随机傅里叶特征的RBFSampler)和不同大小的训练集子集(对于Nystroem)对近似映射的运行时间和准确性。

请注意,此处的dataset规模不足以体现核近似的优势,因为精确的SVM仍然相当快。

增加采样维度显然会带来更好的分类结果,但代价也更大。这意味着在运行时间和准确性之间存在权衡,这由参数n_components决定。请注意,通过使用SGDClassifier进行随机梯度下降,可以大大加快线性SVM和近似核SVM的求解速度。对于核化SVM,这并不容易实现。

Python包和数据集导入,加载数据集#

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

# Standard scientific Python imports
from time import time

import matplotlib.pyplot as plt
import numpy as np

# Import datasets, classifiers and performance metrics
from sklearn import datasets, pipeline, svm
from sklearn.decomposition import PCA
from sklearn.kernel_approximation import Nystroem, RBFSampler

# The digits dataset
digits = datasets.load_digits(n_class=9)

计时和准确性图表#

为了在这个数据上应用分类器,我们需要将图像展平,将数据转换为(样本,特征)矩阵。

n_samples = len(digits.data)
data = digits.data / 16.0
data -= data.mean(axis=0)

# We learn the digits on the first half of the digits
data_train, targets_train = (data[: n_samples // 2], digits.target[: n_samples // 2])


# Now predict the value of the digit on the second half:
data_test, targets_test = (data[n_samples // 2 :], digits.target[n_samples // 2 :])
# data_test = scaler.transform(data_test)

# Create a classifier: a support vector classifier
kernel_svm = svm.SVC(gamma=0.2)
linear_svm = svm.LinearSVC(random_state=42)

# create pipeline from kernel approximation
# and linear svm
feature_map_fourier = RBFSampler(gamma=0.2, random_state=1)
feature_map_nystroem = Nystroem(gamma=0.2, random_state=1)
fourier_approx_svm = pipeline.Pipeline(
    [
        ("feature_map", feature_map_fourier),
        ("svm", svm.LinearSVC(random_state=42)),
    ]
)

nystroem_approx_svm = pipeline.Pipeline(
    [
        ("feature_map", feature_map_nystroem),
        ("svm", svm.LinearSVC(random_state=42)),
    ]
)

# fit and predict using linear and kernel svm:

kernel_svm_time = time()
kernel_svm.fit(data_train, targets_train)
kernel_svm_score = kernel_svm.score(data_test, targets_test)
kernel_svm_time = time() - kernel_svm_time

linear_svm_time = time()
linear_svm.fit(data_train, targets_train)
linear_svm_score = linear_svm.score(data_test, targets_test)
linear_svm_time = time() - linear_svm_time

sample_sizes = 30 * np.arange(1, 10)
fourier_scores = []
nystroem_scores = []
fourier_times = []
nystroem_times = []

for D in sample_sizes:
    fourier_approx_svm.set_params(feature_map__n_components=D)
    nystroem_approx_svm.set_params(feature_map__n_components=D)
    start = time()
    nystroem_approx_svm.fit(data_train, targets_train)
    nystroem_times.append(time() - start)

    start = time()
    fourier_approx_svm.fit(data_train, targets_train)
    fourier_times.append(time() - start)

    fourier_score = fourier_approx_svm.score(data_test, targets_test)
    nystroem_score = nystroem_approx_svm.score(data_test, targets_test)
    nystroem_scores.append(nystroem_score)
    fourier_scores.append(fourier_score)

# plot the results:
plt.figure(figsize=(16, 4))
accuracy = plt.subplot(121)
# second y axis for timings
timescale = plt.subplot(122)

accuracy.plot(sample_sizes, nystroem_scores, label="Nystroem approx. kernel")
timescale.plot(sample_sizes, nystroem_times, "--", label="Nystroem approx. kernel")

accuracy.plot(sample_sizes, fourier_scores, label="Fourier approx. kernel")
timescale.plot(sample_sizes, fourier_times, "--", label="Fourier approx. kernel")

# horizontal lines for exact rbf and linear kernels:
accuracy.plot(
    [sample_sizes[0], sample_sizes[-1]],
    [linear_svm_score, linear_svm_score],
    label="linear svm",
)
timescale.plot(
    [sample_sizes[0], sample_sizes[-1]],
    [linear_svm_time, linear_svm_time],
    "--",
    label="linear svm",
)

accuracy.plot(
    [sample_sizes[0], sample_sizes[-1]],
    [kernel_svm_score, kernel_svm_score],
    label="rbf svm",
)
timescale.plot(
    [sample_sizes[0], sample_sizes[-1]],
    [kernel_svm_time, kernel_svm_time],
    "--",
    label="rbf svm",
)

# vertical line for dataset dimensionality = 64
accuracy.plot([64, 64], [0.7, 1], label="n_features")

# legends and labels
accuracy.set_title("Classification accuracy")
timescale.set_title("Training times")
accuracy.set_xlim(sample_sizes[0], sample_sizes[-1])
accuracy.set_xticks(())
accuracy.set_ylim(np.min(fourier_scores), 1)
timescale.set_xlabel("Sampling steps = transformed feature dimension")
accuracy.set_ylabel("Classification accuracy")
timescale.set_ylabel("Training time in seconds")
accuracy.legend(loc="best")
timescale.legend(loc="best")
plt.tight_layout()
plt.show()
Classification accuracy, Training times

RBF核SVM和线性SVM的决策面#

第二个图可视化了RBF核SVM和具有近似核映射的线性SVM的决策面。该图显示了投影到数据的前两个主成分上的分类器的决策面。这种可视化应该谨慎对待,因为它只是对64维决策面的一个有趣的切片。特别是需要注意的是,数据点(表示为点)并不一定被分类到它所在的区域,因为它不会位于前两个主成分所跨越的平面上。RBFSamplerNystroem 的使用方法在核近似中详细描述。

# visualize the decision surface, projected down to the first
# two principal components of the dataset
pca = PCA(n_components=8, random_state=42).fit(data_train)

X = pca.transform(data_train)

# Generate grid along first two principal components
multiples = np.arange(-2, 2, 0.1)
# steps along first component
first = multiples[:, np.newaxis] * pca.components_[0, :]
# steps along second component
second = multiples[:, np.newaxis] * pca.components_[1, :]
# combine
grid = first[np.newaxis, :, :] + second[:, np.newaxis, :]
flat_grid = grid.reshape(-1, data.shape[1])

# title for the plots
titles = [
    "SVC with rbf kernel",
    "SVC (linear kernel)\n with Fourier rbf feature map\nn_components=100",
    "SVC (linear kernel)\n with Nystroem rbf feature map\nn_components=100",
]

plt.figure(figsize=(18, 7.5))
plt.rcParams.update({"font.size": 14})
# predict and plot
for i, clf in enumerate((kernel_svm, nystroem_approx_svm, fourier_approx_svm)):
    # Plot the decision boundary. For that, we will assign a color to each
    # point in the mesh [x_min, x_max]x[y_min, y_max].
    plt.subplot(1, 3, i + 1)
    Z = clf.predict(flat_grid)

    # Put the result into a color plot
    Z = Z.reshape(grid.shape[:-1])
    levels = np.arange(10)
    lv_eps = 0.01  # Adjust a mapping from calculated contour levels to color.
    plt.contourf(
        multiples,
        multiples,
        Z,
        levels=levels - lv_eps,
        cmap=plt.cm.tab10,
        vmin=0,
        vmax=10,
        alpha=0.7,
    )
    plt.axis("off")

    # Plot also the training points
    plt.scatter(
        X[:, 0],
        X[:, 1],
        c=targets_train,
        cmap=plt.cm.tab10,
        edgecolors=(0, 0, 0),
        vmin=0,
        vmax=10,
    )

    plt.title(titles[i])
plt.tight_layout()
plt.show()
SVC with rbf kernel, SVC (linear kernel)  with Fourier rbf feature map n_components=100, SVC (linear kernel)  with Nystroem rbf feature map n_components=100

脚本总运行时间:(0 分钟 1.928 秒)

相关示例

在 iris 数据集上绘制不同的 SVM 分类器

在 iris 数据集上绘制不同的 SVM 分类器

半监督分类器与 SVM 在 Iris 数据集上的决策边界

半监督分类器与 SVM 在 Iris 数据集上的决策边界

RBF SVM 参数

RBF SVM 参数

使用多项式核近似的可扩展学习

使用多项式核近似的可扩展学习

由Sphinx-Gallery生成的图库