注意
转到结尾 下载完整的示例代码。或者通过 JupyterLite 或 Binder 在您的浏览器中运行此示例
随机梯度下降的提前停止#
随机梯度下降 (Stochastic Gradient Descent, SGD) 是一种优化技术,它以随机的方式最小化损失函数,每次迭代只基于一个样本进行梯度下降。特别是,它是一种拟合线性模型非常有效的方法。
作为一种随机方法,损失函数在每次迭代中并不一定单调递减,收敛性仅在期望意义下得到保证。因此,监控损失函数的收敛性可能比较困难。
另一种方法是监控验证集上的分数。在这种情况下,输入数据被分成训练集和验证集。模型在训练集上拟合,停止准则基于在验证集上计算的预测分数。这使我们能够找到构建能够很好地泛化到未见数据的模型所需的最小迭代次数,并降低过度拟合训练数据的可能性。
如果设置 early_stopping=True
,则激活此提前停止策略;否则,停止准则仅使用整个输入数据上的训练损失。为了更好地控制提前停止策略,我们可以指定参数 validation_fraction
,它设置保留用于计算验证分数的输入数据集的分数。优化过程将持续进行,直到在最后 n_iter_no_change
次迭代中,验证分数的提升小于 tol
。实际迭代次数可在属性 n_iter_
中找到。
此示例说明了如何在 SGDClassifier
模型中使用提前停止策略,以达到与未启用提前停止的模型几乎相同的精度。这可以显著减少训练时间。请注意,即使从早期迭代开始,由于部分训练数据被保留用于验证停止准则,因此不同停止准则的得分也会有所不同。
No stopping criterion: .................................................
Training loss: .................................................
Validation score: .................................................
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import sys
import time
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import linear_model
from sklearn.datasets import fetch_openml
from sklearn.exceptions import ConvergenceWarning
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle
from sklearn.utils._testing import ignore_warnings
def load_mnist(n_samples=None, class_0="0", class_1="8"):
"""Load MNIST, select two classes, shuffle and return only n_samples."""
# Load data from http://openml.org/d/554
mnist = fetch_openml("mnist_784", version=1, as_frame=False)
# take only two classes for binary classification
mask = np.logical_or(mnist.target == class_0, mnist.target == class_1)
X, y = shuffle(mnist.data[mask], mnist.target[mask], random_state=42)
if n_samples is not None:
X, y = X[:n_samples], y[:n_samples]
return X, y
@ignore_warnings(category=ConvergenceWarning)
def fit_and_score(estimator, max_iter, X_train, X_test, y_train, y_test):
"""Fit the estimator on the train set and score it on both sets"""
estimator.set_params(max_iter=max_iter)
estimator.set_params(random_state=0)
start = time.time()
estimator.fit(X_train, y_train)
fit_time = time.time() - start
n_iter = estimator.n_iter_
train_score = estimator.score(X_train, y_train)
test_score = estimator.score(X_test, y_test)
return fit_time, n_iter, train_score, test_score
# Define the estimators to compare
estimator_dict = {
"No stopping criterion": linear_model.SGDClassifier(n_iter_no_change=3),
"Training loss": linear_model.SGDClassifier(
early_stopping=False, n_iter_no_change=3, tol=0.1
),
"Validation score": linear_model.SGDClassifier(
early_stopping=True, n_iter_no_change=3, tol=0.0001, validation_fraction=0.2
),
}
# Load the dataset
X, y = load_mnist(n_samples=10000)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)
results = []
for estimator_name, estimator in estimator_dict.items():
print(estimator_name + ": ", end="")
for max_iter in range(1, 50):
print(".", end="")
sys.stdout.flush()
fit_time, n_iter, train_score, test_score = fit_and_score(
estimator, max_iter, X_train, X_test, y_train, y_test
)
results.append(
(estimator_name, max_iter, fit_time, n_iter, train_score, test_score)
)
print("")
# Transform the results in a pandas dataframe for easy plotting
columns = [
"Stopping criterion",
"max_iter",
"Fit time (sec)",
"n_iter_",
"Train score",
"Test score",
]
results_df = pd.DataFrame(results, columns=columns)
# Define what to plot
lines = "Stopping criterion"
x_axis = "max_iter"
styles = ["-.", "--", "-"]
# First plot: train and test scores
fig, axes = plt.subplots(nrows=1, ncols=2, sharey=True, figsize=(12, 4))
for ax, y_axis in zip(axes, ["Train score", "Test score"]):
for style, (criterion, group_df) in zip(styles, results_df.groupby(lines)):
group_df.plot(x=x_axis, y=y_axis, label=criterion, ax=ax, style=style)
ax.set_title(y_axis)
ax.legend(title=lines)
fig.tight_layout()
# Second plot: n_iter and fit time
fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(12, 4))
for ax, y_axis in zip(axes, ["n_iter_", "Fit time (sec)"]):
for style, (criterion, group_df) in zip(styles, results_df.groupby(lines)):
group_df.plot(x=x_axis, y=y_axis, label=criterion, ax=ax, style=style)
ax.set_title(y_axis)
ax.legend(title=lines)
fig.tight_layout()
plt.show()
脚本总运行时间:(0 分钟 23.900 秒)
相关示例
梯度提升中的提前停止
Lasso 模型选择:AIC-BIC / 交叉验证
比较各种在线求解器
直方图梯度提升树中的特征