注意
转到末尾 下载完整的示例代码。或通过JupyterLite或Binder在浏览器中运行此示例
Ledoit-Wolf 与 OAS 估计#
通常的协方差最大似然估计可以使用收缩进行正则化。Ledoit 和 Wolf 提出了一种计算渐近最优收缩参数(最小化 MSE 准则)的封闭公式,从而得到 Ledoit-Wolf 协方差估计。
Chen 等人提出了一种改进的 Ledoit-Wolf 收缩参数,即 OAS 系数,在数据服从高斯分布的假设下,其收敛性明显更好。
这个例子受到 Chen 的出版物 [1] 的启发,展示了使用高斯分布数据比较 LW 和 OAS 方法的估计 MSE。
[1] “用于 MMSE 协方差估计的收缩算法” Chen 等人,IEEE Trans. on Sign. Proc.,第 58 卷,第 10 期,2010 年 10 月。
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import matplotlib.pyplot as plt
import numpy as np
from scipy.linalg import cholesky, toeplitz
from sklearn.covariance import OAS, LedoitWolf
np.random.seed(0)
n_features = 100
# simulation covariance matrix (AR(1) process)
r = 0.1
real_cov = toeplitz(r ** np.arange(n_features))
coloring_matrix = cholesky(real_cov)
n_samples_range = np.arange(6, 31, 1)
repeat = 100
lw_mse = np.zeros((n_samples_range.size, repeat))
oa_mse = np.zeros((n_samples_range.size, repeat))
lw_shrinkage = np.zeros((n_samples_range.size, repeat))
oa_shrinkage = np.zeros((n_samples_range.size, repeat))
for i, n_samples in enumerate(n_samples_range):
for j in range(repeat):
X = np.dot(np.random.normal(size=(n_samples, n_features)), coloring_matrix.T)
lw = LedoitWolf(store_precision=False, assume_centered=True)
lw.fit(X)
lw_mse[i, j] = lw.error_norm(real_cov, scaling=False)
lw_shrinkage[i, j] = lw.shrinkage_
oa = OAS(store_precision=False, assume_centered=True)
oa.fit(X)
oa_mse[i, j] = oa.error_norm(real_cov, scaling=False)
oa_shrinkage[i, j] = oa.shrinkage_
# plot MSE
plt.subplot(2, 1, 1)
plt.errorbar(
n_samples_range,
lw_mse.mean(1),
yerr=lw_mse.std(1),
label="Ledoit-Wolf",
color="navy",
lw=2,
)
plt.errorbar(
n_samples_range,
oa_mse.mean(1),
yerr=oa_mse.std(1),
label="OAS",
color="darkorange",
lw=2,
)
plt.ylabel("Squared error")
plt.legend(loc="upper right")
plt.title("Comparison of covariance estimators")
plt.xlim(5, 31)
# plot shrinkage coefficient
plt.subplot(2, 1, 2)
plt.errorbar(
n_samples_range,
lw_shrinkage.mean(1),
yerr=lw_shrinkage.std(1),
label="Ledoit-Wolf",
color="navy",
lw=2,
)
plt.errorbar(
n_samples_range,
oa_shrinkage.mean(1),
yerr=oa_shrinkage.std(1),
label="OAS",
color="darkorange",
lw=2,
)
plt.xlabel("n_samples")
plt.ylabel("Shrinkage")
plt.legend(loc="lower right")
plt.ylim(plt.ylim()[0], 1.0 + (plt.ylim()[1] - plt.ylim()[0]) / 10.0)
plt.xlim(5, 31)
plt.show()
脚本总运行时间:(0 分钟 2.548 秒)
相关示例
收缩协方差估计:LedoitWolf 与 OAS 和最大似然
收缩协方差估计:LedoitWolf 与 OAS 和最大似然
用于分类的正态、Ledoit-Wolf 和 OAS 线性判别分析
用于分类的正态、Ledoit-Wolf 和 OAS 线性判别分析
稳健与经验协方差估计
稀疏逆协方差估计