注意
转到结尾 下载完整的示例代码。或者通过 JupyterLite 或 Binder 在浏览器中运行此示例
绘制 VotingClassifier 计算的类别概率#
绘制由三种不同的分类器预测的玩具数据集中第一个样本的类别概率,并由 VotingClassifier
平均。
首先,初始化三个示例分类器(LogisticRegression
、GaussianNB
和 RandomForestClassifier
),并使用权重 [1, 1, 5]
初始化软投票 VotingClassifier
,这意味着在计算平均概率时,RandomForestClassifier
的预测概率的权重是其他分类器的 5 倍。
为了可视化概率加权,我们将每个分类器拟合到训练集上,并绘制此示例数据集中第一个样本的预测类别概率。
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import matplotlib.pyplot as plt
import numpy as np
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
clf1 = LogisticRegression(max_iter=1000, random_state=123)
clf2 = RandomForestClassifier(n_estimators=100, random_state=123)
clf3 = GaussianNB()
X = np.array([[-1.0, -1.0], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]])
y = np.array([1, 1, 2, 2])
eclf = VotingClassifier(
estimators=[("lr", clf1), ("rf", clf2), ("gnb", clf3)],
voting="soft",
weights=[1, 1, 5],
)
# predict class probabilities for all classifiers
probas = [c.fit(X, y).predict_proba(X) for c in (clf1, clf2, clf3, eclf)]
# get class probabilities for the first sample in the dataset
class1_1 = [pr[0, 0] for pr in probas]
class2_1 = [pr[0, 1] for pr in probas]
# plotting
N = 4 # number of groups
ind = np.arange(N) # group positions
width = 0.35 # bar width
fig, ax = plt.subplots()
# bars for classifier 1-3
p1 = ax.bar(ind, np.hstack(([class1_1[:-1], [0]])), width, color="green", edgecolor="k")
p2 = ax.bar(
ind + width,
np.hstack(([class2_1[:-1], [0]])),
width,
color="lightgreen",
edgecolor="k",
)
# bars for VotingClassifier
p3 = ax.bar(ind, [0, 0, 0, class1_1[-1]], width, color="blue", edgecolor="k")
p4 = ax.bar(
ind + width, [0, 0, 0, class2_1[-1]], width, color="steelblue", edgecolor="k"
)
# plot annotations
plt.axvline(2.8, color="k", linestyle="dashed")
ax.set_xticks(ind + width)
ax.set_xticklabels(
[
"LogisticRegression\nweight 1",
"GaussianNB\nweight 1",
"RandomForestClassifier\nweight 5",
"VotingClassifier\n(average probabilities)",
],
rotation=40,
ha="right",
)
plt.ylim([0, 1])
plt.title("Class probabilities for sample 1 by different classifiers")
plt.legend([p1[0], p2[0]], ["class 1", "class 2"], loc="upper left")
plt.tight_layout()
plt.show()
脚本总运行时间:(0 分钟 0.359 秒)
相关示例