使用轮廓分析选择 KMeans 聚类中的簇数#

轮廓分析可用于研究生成的聚类之间的分离距离。轮廓图显示了每个点在一个聚类中与相邻聚类中的点的接近程度的度量,因此提供了一种直观评估参数(如聚类数)的方法。此度量的范围为 [-1, 1]。

接近 +1 的轮廓系数(这些值被称为)表示样本远离相邻聚类。值为 0 表示样本位于或非常靠近两个相邻聚类之间的决策边界,负值表示这些样本可能被分配到错误的聚类。

在此示例中,轮廓分析用于为n_clusters选择最佳值。轮廓图显示n_clusters值为 3、5 和 6 对于给定数据来说是一个糟糕的选择,因为存在轮廓分数低于平均值的聚类,并且轮廓图的大小也存在较大的波动。轮廓分析在决定 2 和 4 之间更加犹豫。

此外,还可以从轮廓图的厚度可视化聚类大小。n_clusters等于 2 时,聚类 0 的轮廓图更大,因为 3 个子聚类被组合成一个大的聚类。但是,当n_clusters等于 4 时,所有图的厚度大致相同,因此大小也大致相同,这也可以从右侧的带标签的散点图中验证。

  • Silhouette analysis for KMeans clustering on sample data with n_clusters = 2, The silhouette plot for the various clusters., The visualization of the clustered data.
  • Silhouette analysis for KMeans clustering on sample data with n_clusters = 3, The silhouette plot for the various clusters., The visualization of the clustered data.
  • Silhouette analysis for KMeans clustering on sample data with n_clusters = 4, The silhouette plot for the various clusters., The visualization of the clustered data.
  • Silhouette analysis for KMeans clustering on sample data with n_clusters = 5, The silhouette plot for the various clusters., The visualization of the clustered data.
  • Silhouette analysis for KMeans clustering on sample data with n_clusters = 6, The silhouette plot for the various clusters., The visualization of the clustered data.
For n_clusters = 2 The average silhouette_score is : 0.7049787496083262
For n_clusters = 3 The average silhouette_score is : 0.5882004012129721
For n_clusters = 4 The average silhouette_score is : 0.6505186632729437
For n_clusters = 5 The average silhouette_score is : 0.561464362648773
For n_clusters = 6 The average silhouette_score is : 0.4857596147013469

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import matplotlib.cm as cm
import matplotlib.pyplot as plt
import numpy as np

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
from sklearn.metrics import silhouette_samples, silhouette_score

# Generating the sample data from make_blobs
# This particular setting has one distinct cluster and 3 clusters placed close
# together.
X, y = make_blobs(
    n_samples=500,
    n_features=2,
    centers=4,
    cluster_std=1,
    center_box=(-10.0, 10.0),
    shuffle=True,
    random_state=1,
)  # For reproducibility

range_n_clusters = [2, 3, 4, 5, 6]

for n_clusters in range_n_clusters:
    # Create a subplot with 1 row and 2 columns
    fig, (ax1, ax2) = plt.subplots(1, 2)
    fig.set_size_inches(18, 7)

    # The 1st subplot is the silhouette plot
    # The silhouette coefficient can range from -1, 1 but in this example all
    # lie within [-0.1, 1]
    ax1.set_xlim([-0.1, 1])
    # The (n_clusters+1)*10 is for inserting blank space between silhouette
    # plots of individual clusters, to demarcate them clearly.
    ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])

    # Initialize the clusterer with n_clusters value and a random generator
    # seed of 10 for reproducibility.
    clusterer = KMeans(n_clusters=n_clusters, random_state=10)
    cluster_labels = clusterer.fit_predict(X)

    # The silhouette_score gives the average value for all the samples.
    # This gives a perspective into the density and separation of the formed
    # clusters
    silhouette_avg = silhouette_score(X, cluster_labels)
    print(
        "For n_clusters =",
        n_clusters,
        "The average silhouette_score is :",
        silhouette_avg,
    )

    # Compute the silhouette scores for each sample
    sample_silhouette_values = silhouette_samples(X, cluster_labels)

    y_lower = 10
    for i in range(n_clusters):
        # Aggregate the silhouette scores for samples belonging to
        # cluster i, and sort them
        ith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i]

        ith_cluster_silhouette_values.sort()

        size_cluster_i = ith_cluster_silhouette_values.shape[0]
        y_upper = y_lower + size_cluster_i

        color = cm.nipy_spectral(float(i) / n_clusters)
        ax1.fill_betweenx(
            np.arange(y_lower, y_upper),
            0,
            ith_cluster_silhouette_values,
            facecolor=color,
            edgecolor=color,
            alpha=0.7,
        )

        # Label the silhouette plots with their cluster numbers at the middle
        ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))

        # Compute the new y_lower for next plot
        y_lower = y_upper + 10  # 10 for the 0 samples

    ax1.set_title("The silhouette plot for the various clusters.")
    ax1.set_xlabel("The silhouette coefficient values")
    ax1.set_ylabel("Cluster label")

    # The vertical line for average silhouette score of all the values
    ax1.axvline(x=silhouette_avg, color="red", linestyle="--")

    ax1.set_yticks([])  # Clear the yaxis labels / ticks
    ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])

    # 2nd Plot showing the actual clusters formed
    colors = cm.nipy_spectral(cluster_labels.astype(float) / n_clusters)
    ax2.scatter(
        X[:, 0], X[:, 1], marker=".", s=30, lw=0, alpha=0.7, c=colors, edgecolor="k"
    )

    # Labeling the clusters
    centers = clusterer.cluster_centers_
    # Draw white circles at cluster centers
    ax2.scatter(
        centers[:, 0],
        centers[:, 1],
        marker="o",
        c="white",
        alpha=1,
        s=200,
        edgecolor="k",
    )

    for i, c in enumerate(centers):
        ax2.scatter(c[0], c[1], marker="$%d$" % i, alpha=1, s=50, edgecolor="k")

    ax2.set_title("The visualization of the clustered data.")
    ax2.set_xlabel("Feature space for the 1st feature")
    ax2.set_ylabel("Feature space for the 2nd feature")

    plt.suptitle(
        "Silhouette analysis for KMeans clustering on sample data with n_clusters = %d"
        % n_clusters,
        fontsize=14,
        fontweight="bold",
    )

plt.show()

脚本总运行时间:(0 分钟 1.127 秒)

相关示例

二分 K 均值和常规 K 均值性能比较

二分 K 均值和常规 K 均值性能比较

使用 k 均值对文本文档进行聚类

使用 k 均值对文本文档进行聚类

DBSCAN 聚类算法演示

DBSCAN 聚类算法演示

具有不同度量的凝聚聚类

具有不同度量的凝聚聚类

由 Sphinx-Gallery 生成的图库