使用邻域成分分析进行降维#

邻域成分分析在降维中的示例用法。

此示例比较了应用于数字数据集的不同(线性)降维方法。数据集包含 0 到 9 的数字图像,每个类别大约有 180 个样本。每个图像的维度为 8x8 = 64,并缩减为二维数据点。

应用于此数据的主成分分析 (PCA) 识别属性(主成分或特征空间中的方向)的组合,这些属性解释了数据中的最大方差。在这里,我们将不同的样本绘制在 2 个主要成分上。

线性判别分析 (LDA) 试图识别解释类间最大方差的属性。特别是,与 PCA 相反,LDA 是一种使用已知类别标签的监督方法。

邻域成分分析 (NCA) 试图找到一个特征空间,以便随机最近邻算法能够获得最佳精度。与 LDA 一样,它也是一种监督方法。

可以看出,尽管维度大大降低,但 NCA 仍然对数据进行了视觉上有意义的聚类。

  • PCA, KNN (k=3) Test accuracy = 0.52
  • LDA, KNN (k=3) Test accuracy = 0.66
  • NCA, KNN (k=3) Test accuracy = 0.70
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import matplotlib.pyplot as plt
import numpy as np

from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier, NeighborhoodComponentsAnalysis
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

n_neighbors = 3
random_state = 0

# Load Digits dataset
X, y = datasets.load_digits(return_X_y=True)

# Split into train/test
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.5, stratify=y, random_state=random_state
)

dim = len(X[0])
n_classes = len(np.unique(y))

# Reduce dimension to 2 with PCA
pca = make_pipeline(StandardScaler(), PCA(n_components=2, random_state=random_state))

# Reduce dimension to 2 with LinearDiscriminantAnalysis
lda = make_pipeline(StandardScaler(), LinearDiscriminantAnalysis(n_components=2))

# Reduce dimension to 2 with NeighborhoodComponentAnalysis
nca = make_pipeline(
    StandardScaler(),
    NeighborhoodComponentsAnalysis(n_components=2, random_state=random_state),
)

# Use a nearest neighbor classifier to evaluate the methods
knn = KNeighborsClassifier(n_neighbors=n_neighbors)

# Make a list of the methods to be compared
dim_reduction_methods = [("PCA", pca), ("LDA", lda), ("NCA", nca)]

# plt.figure()
for i, (name, model) in enumerate(dim_reduction_methods):
    plt.figure()
    # plt.subplot(1, 3, i + 1, aspect=1)

    # Fit the method's model
    model.fit(X_train, y_train)

    # Fit a nearest neighbor classifier on the embedded training set
    knn.fit(model.transform(X_train), y_train)

    # Compute the nearest neighbor accuracy on the embedded test set
    acc_knn = knn.score(model.transform(X_test), y_test)

    # Embed the data set in 2 dimensions using the fitted model
    X_embedded = model.transform(X)

    # Plot the projected points and show the evaluation score
    plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c=y, s=30, cmap="Set1")
    plt.title(
        "{}, KNN (k={})\nTest accuracy = {:.2f}".format(name, n_neighbors, acc_knn)
    )
plt.show()

脚本总运行时间:(0 分钟 2.016 秒)

相关示例

鸢尾花数据集的 LDA 和 PCA 2D 投影比较

鸢尾花数据集的 LDA 和 PCA 2D 投影比较

比较使用和不使用邻域成分分析的最近邻

比较使用和不使用邻域成分分析的最近邻

用于分类的正态、Ledoit-Wolf 和 OAS 线性判别分析

用于分类的正态、Ledoit-Wolf 和 OAS 线性判别分析

邻域成分分析图示

邻域成分分析图示

由 Sphinx-Gallery 生成的图库