注意
转到末尾 下载完整的示例代码。或者通过 JupyterLite 或 Binder 在您的浏览器中运行此示例
具有异构数据源的列转换器#
数据集通常包含需要不同特征提取和处理管道的组件。当出现以下情况时,可能会出现这种情况:
您的数据集包含异构数据类型(例如光栅图像和文本标题),
您的数据集存储在
pandas.DataFrame
中,并且不同的列需要不同的处理管道。
此示例演示如何在包含不同类型特征的数据集上使用 ColumnTransformer
。特征的选择并非特别有用,但可以说明该技术。
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import numpy as np
from sklearn.compose import ColumnTransformer
from sklearn.datasets import fetch_20newsgroups
from sklearn.decomposition import PCA
from sklearn.feature_extraction import DictVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import FunctionTransformer
from sklearn.svm import LinearSVC
20 个新闻组数据集#
我们将使用 20 个新闻组数据集,该数据集包含来自 20 个主题的新闻组的帖子。此数据集根据特定日期之前和之后发布的消息分为训练和测试子集。我们将只使用来自 2 个类别的帖子以加快运行时间。
categories = ["sci.med", "sci.space"]
X_train, y_train = fetch_20newsgroups(
random_state=1,
subset="train",
categories=categories,
remove=("footers", "quotes"),
return_X_y=True,
)
X_test, y_test = fetch_20newsgroups(
random_state=1,
subset="test",
categories=categories,
remove=("footers", "quotes"),
return_X_y=True,
)
每个特征都包含有关该帖子的元信息,例如主题和新闻帖子的正文。
print(X_train[0])
From: [email protected] (fred j mccall 575-3539)
Subject: Re: Metric vs English
Article-I.D.: mksol.1993Apr6.131900.8407
Organization: Texas Instruments Inc
Lines: 31
American, perhaps, but nothing military about it. I learned (mostly)
slugs when we talked English units in high school physics and while
the teacher was an ex-Navy fighter jock the book certainly wasn't
produced by the military.
[Poundals were just too flinking small and made the math come out
funny; sort of the same reason proponents of SI give for using that.]
--
"Insisting on perfect safety is for people who don't have the balls to live
in the real world." -- Mary Shafer, NASA Ames Dryden
创建转换器#
首先,我们想要一个提取每个帖子主题和正文的转换器。由于这是一个无状态转换(不需要来自训练数据的状态信息),我们可以定义一个执行数据转换的函数,然后使用 FunctionTransformer
创建一个 scikit-learn 转换器。
def subject_body_extractor(posts):
# construct object dtype array with two columns
# first column = 'subject' and second column = 'body'
features = np.empty(shape=(len(posts), 2), dtype=object)
for i, text in enumerate(posts):
# temporary variable `_` stores '\n\n'
headers, _, body = text.partition("\n\n")
# store body text in second column
features[i, 1] = body
prefix = "Subject:"
sub = ""
# save text after 'Subject:' in first column
for line in headers.split("\n"):
if line.startswith(prefix):
sub = line[len(prefix) :]
break
features[i, 0] = sub
return features
subject_body_transformer = FunctionTransformer(subject_body_extractor)
我们还将创建一个转换器,用于提取文本长度和句子数量。
def text_stats(posts):
return [{"length": len(text), "num_sentences": text.count(".")} for text in posts]
text_stats_transformer = FunctionTransformer(text_stats)
分类管道#
下面的管道使用 SubjectBodyExtractor
从每个帖子中提取主题和正文,生成一个 (n_samples, 2) 数组。然后,此数组用于使用 ColumnTransformer
计算主题和正文的标准词袋特征以及正文的文本长度和句子数量。我们将它们组合起来,并加权,然后在组合的特征集上训练分类器。
pipeline = Pipeline(
[
# Extract subject & body
("subjectbody", subject_body_transformer),
# Use ColumnTransformer to combine the subject and body features
(
"union",
ColumnTransformer(
[
# bag-of-words for subject (col 0)
("subject", TfidfVectorizer(min_df=50), 0),
# bag-of-words with decomposition for body (col 1)
(
"body_bow",
Pipeline(
[
("tfidf", TfidfVectorizer()),
("best", PCA(n_components=50, svd_solver="arpack")),
]
),
1,
),
# Pipeline for pulling text stats from post's body
(
"body_stats",
Pipeline(
[
(
"stats",
text_stats_transformer,
), # returns a list of dicts
(
"vect",
DictVectorizer(),
), # list of dicts -> feature matrix
]
),
1,
),
],
# weight above ColumnTransformer features
transformer_weights={
"subject": 0.8,
"body_bow": 0.5,
"body_stats": 1.0,
},
),
),
# Use a SVC classifier on the combined features
("svc", LinearSVC(dual=False)),
],
verbose=True,
)
最后,我们将我们的管道拟合到训练数据上,并用它来预测 X_test
的主题。然后打印我们管道的性能指标。
pipeline.fit(X_train, y_train)
y_pred = pipeline.predict(X_test)
print("Classification report:\n\n{}".format(classification_report(y_test, y_pred)))
[Pipeline] ....... (step 1 of 3) Processing subjectbody, total= 0.0s
[Pipeline] ............. (step 2 of 3) Processing union, total= 0.4s
[Pipeline] ............... (step 3 of 3) Processing svc, total= 0.0s
Classification report:
precision recall f1-score support
0 0.84 0.87 0.86 396
1 0.87 0.84 0.85 394
accuracy 0.86 790
macro avg 0.86 0.86 0.86 790
weighted avg 0.86 0.86 0.86 790
脚本总运行时间:(0 分钟 2.562 秒)
相关示例
FeatureHasher 和 DictVectorizer 比较