概率校准曲线#

在进行分类时,人们通常不仅希望预测类别标签,还希望预测相关的概率。此概率对预测提供某种程度的置信度。本示例演示了如何使用校准曲线(也称为可靠性图)来可视化预测概率的校准程度。还将演示未校准分类器的校准。

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

数据集#

我们将使用一个包含 100,000 个样本和 20 个特征的合成二元分类数据集。在 20 个特征中,只有 2 个是有信息的,10 个是冗余的(信息特征的随机组合),其余 8 个是没有信息的(随机数)。在 100,000 个样本中,将有 1,000 个用于模型拟合,其余用于测试。

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

X, y = make_classification(
    n_samples=100_000, n_features=20, n_informative=2, n_redundant=10, random_state=42
)

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.99, random_state=42
)

校准曲线#

高斯朴素贝叶斯#

首先,我们将比较

  • LogisticRegression(用作基线,因为通常情况下,由于使用了对数损失,适当正则化的逻辑回归默认情况下是经过良好校准的)

  • 未校准的 GaussianNB

  • GaussianNB 使用等距和 sigmoid 校准(参见 用户指南

下面绘制了所有四种情况的校准曲线,其中 x 轴是每个 bin 的平均预测概率,y 轴是每个 bin 中正类别的分数。

import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec

from sklearn.calibration import CalibratedClassifierCV, CalibrationDisplay
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB

lr = LogisticRegression(C=1.0)
gnb = GaussianNB()
gnb_isotonic = CalibratedClassifierCV(gnb, cv=2, method="isotonic")
gnb_sigmoid = CalibratedClassifierCV(gnb, cv=2, method="sigmoid")

clf_list = [
    (lr, "Logistic"),
    (gnb, "Naive Bayes"),
    (gnb_isotonic, "Naive Bayes + Isotonic"),
    (gnb_sigmoid, "Naive Bayes + Sigmoid"),
]
fig = plt.figure(figsize=(10, 10))
gs = GridSpec(4, 2)
colors = plt.get_cmap("Dark2")

ax_calibration_curve = fig.add_subplot(gs[:2, :2])
calibration_displays = {}
for i, (clf, name) in enumerate(clf_list):
    clf.fit(X_train, y_train)
    display = CalibrationDisplay.from_estimator(
        clf,
        X_test,
        y_test,
        n_bins=10,
        name=name,
        ax=ax_calibration_curve,
        color=colors(i),
    )
    calibration_displays[name] = display

ax_calibration_curve.grid()
ax_calibration_curve.set_title("Calibration plots (Naive Bayes)")

# Add histogram
grid_positions = [(2, 0), (2, 1), (3, 0), (3, 1)]
for i, (_, name) in enumerate(clf_list):
    row, col = grid_positions[i]
    ax = fig.add_subplot(gs[row, col])

    ax.hist(
        calibration_displays[name].y_prob,
        range=(0, 1),
        bins=10,
        label=name,
        color=colors(i),
    )
    ax.set(title=name, xlabel="Mean predicted probability", ylabel="Count")

plt.tight_layout()
plt.show()
Calibration plots (Naive Bayes), Logistic, Naive Bayes, Naive Bayes + Isotonic, Naive Bayes + Sigmoid

未校准的 GaussianNB 校准效果不佳,因为冗余特征违反了特征独立性的假设,导致分类器过于自信,这由典型的转置 sigmoid 曲线所示。使用 等距回归GaussianNB 的概率进行校准可以解决这个问题,从接近对角线的校准曲线可以看出这一点。Sigmoid 回归 也略微提高了校准精度,尽管不如非参数等距回归强。这可以归因于我们拥有大量的校准数据,因此可以利用非参数模型的更大灵活性。

下面我们将进行定量分析,考虑几个分类指标:Brier 评分损失对数损失精确度、召回率、F1 分数ROC AUC

from collections import defaultdict

import pandas as pd

from sklearn.metrics import (
    brier_score_loss,
    f1_score,
    log_loss,
    precision_score,
    recall_score,
    roc_auc_score,
)

scores = defaultdict(list)
for i, (clf, name) in enumerate(clf_list):
    clf.fit(X_train, y_train)
    y_prob = clf.predict_proba(X_test)
    y_pred = clf.predict(X_test)
    scores["Classifier"].append(name)

    for metric in [brier_score_loss, log_loss, roc_auc_score]:
        score_name = metric.__name__.replace("_", " ").replace("score", "").capitalize()
        scores[score_name].append(metric(y_test, y_prob[:, 1]))

    for metric in [precision_score, recall_score, f1_score]:
        score_name = metric.__name__.replace("_", " ").replace("score", "").capitalize()
        scores[score_name].append(metric(y_test, y_pred))

    score_df = pd.DataFrame(scores).set_index("Classifier")
    score_df.round(decimals=3)

score_df
Brier 损失 对数损失 Roc auc 精确度 召回率 F1
分类器
Logistic 0.098932 0.323200 0.937443 0.871965 0.851348 0.861533
朴素贝叶斯 0.117608 0.782755 0.940374 0.857400 0.875941 0.866571
朴素贝叶斯 + 等距 0.098332 0.370738 0.938613 0.883065 0.836224 0.859007
朴素贝叶斯 + Sigmoid 0.108880 0.368896 0.940201 0.861106 0.871277 0.866161


请注意,尽管校准改进了 Brier 评分损失(一个由校准项和细化项组成的指标)和 对数损失,但它并没有显著改变预测精度度量(精确度、召回率和 F1 分数)。这是因为校准不应显着改变决策阈值位置处的预测概率(在图上 x = 0.5 处)。但是,校准应该使预测概率更准确,因此对于在不确定性下做出分配决策更有用。此外,ROC AUC 根本不应该改变,因为校准是单调变换。实际上,没有排名指标会受到校准的影响。

线性支持向量机分类器#

接下来,我们将比较

import numpy as np

from sklearn.svm import LinearSVC


class NaivelyCalibratedLinearSVC(LinearSVC):
    """LinearSVC with `predict_proba` method that naively scales
    `decision_function` output for binary classification."""

    def fit(self, X, y):
        super().fit(X, y)
        df = self.decision_function(X)
        self.df_min_ = df.min()
        self.df_max_ = df.max()

    def predict_proba(self, X):
        """Min-max scale output of `decision_function` to [0, 1]."""
        df = self.decision_function(X)
        calibrated_df = (df - self.df_min_) / (self.df_max_ - self.df_min_)
        proba_pos_class = np.clip(calibrated_df, 0, 1)
        proba_neg_class = 1 - proba_pos_class
        proba = np.c_[proba_neg_class, proba_pos_class]
        return proba
lr = LogisticRegression(C=1.0)
svc = NaivelyCalibratedLinearSVC(max_iter=10_000)
svc_isotonic = CalibratedClassifierCV(svc, cv=2, method="isotonic")
svc_sigmoid = CalibratedClassifierCV(svc, cv=2, method="sigmoid")

clf_list = [
    (lr, "Logistic"),
    (svc, "SVC"),
    (svc_isotonic, "SVC + Isotonic"),
    (svc_sigmoid, "SVC + Sigmoid"),
]
fig = plt.figure(figsize=(10, 10))
gs = GridSpec(4, 2)

ax_calibration_curve = fig.add_subplot(gs[:2, :2])
calibration_displays = {}
for i, (clf, name) in enumerate(clf_list):
    clf.fit(X_train, y_train)
    display = CalibrationDisplay.from_estimator(
        clf,
        X_test,
        y_test,
        n_bins=10,
        name=name,
        ax=ax_calibration_curve,
        color=colors(i),
    )
    calibration_displays[name] = display

ax_calibration_curve.grid()
ax_calibration_curve.set_title("Calibration plots (SVC)")

# Add histogram
grid_positions = [(2, 0), (2, 1), (3, 0), (3, 1)]
for i, (_, name) in enumerate(clf_list):
    row, col = grid_positions[i]
    ax = fig.add_subplot(gs[row, col])

    ax.hist(
        calibration_displays[name].y_prob,
        range=(0, 1),
        bins=10,
        label=name,
        color=colors(i),
    )
    ax.set(title=name, xlabel="Mean predicted probability", ylabel="Count")

plt.tight_layout()
plt.show()
Calibration plots (SVC), Logistic, SVC, SVC + Isotonic, SVC + Sigmoid

GaussianNB表现相反,LinearSVC的校准曲线呈S形,这通常是欠自信分类器的特征。对于LinearSVC,这是由铰链损失的边缘属性引起的,该属性侧重于靠近决策边界的样本(支持向量)。远离决策边界的样本不会影响铰链损失。因此,LinearSVC不尝试分离高置信度区域中的样本是合理的。这导致在0和1附近校准曲线更平坦,并且在Niculescu-Mizil & Caruana[1]中使用各种数据集进行了实证证明。

两种校准方法(S形和等距)都可以解决这个问题,并产生类似的结果。

和前面一样,我们展示了Brier评分损失对数损失精确率、召回率、F1分数ROC AUC

scores = defaultdict(list)
for i, (clf, name) in enumerate(clf_list):
    clf.fit(X_train, y_train)
    y_prob = clf.predict_proba(X_test)
    y_pred = clf.predict(X_test)
    scores["Classifier"].append(name)

    for metric in [brier_score_loss, log_loss, roc_auc_score]:
        score_name = metric.__name__.replace("_", " ").replace("score", "").capitalize()
        scores[score_name].append(metric(y_test, y_prob[:, 1]))

    for metric in [precision_score, recall_score, f1_score]:
        score_name = metric.__name__.replace("_", " ").replace("score", "").capitalize()
        scores[score_name].append(metric(y_test, y_pred))

    score_df = pd.DataFrame(scores).set_index("Classifier")
    score_df.round(decimals=3)

score_df
Brier 损失 对数损失 Roc auc 精确度 召回率 F1
分类器
Logistic 0.098932 0.323200 0.937443 0.871965 0.851348 0.861533
SVC 0.144943 0.465660 0.937597 0.872186 0.851792 0.861868
SVC + 等距 0.099820 0.376999 0.936480 0.853174 0.877981 0.865400
SVC + S形 0.098758 0.321301 0.937532 0.873724 0.848743 0.861053


与上面的GaussianNB一样,校准提高了Brier评分损失对数损失,但并没有显著改变预测精度指标(精确率、召回率和F1分数)。

总结#

参数化S形校准可以处理基分类器的校准曲线为S形的情况(例如,对于LinearSVC),但不能处理其为反S形的情况(例如,GaussianNB)。非参数等距校准可以处理这两种情况,但可能需要更多数据才能产生良好的结果。

参考文献#

脚本总运行时间:(0分钟2.241秒)

相关示例

分类器的概率校准

分类器的概率校准

分类器校准比较

分类器校准比较

三类分类的概率校准

三类分类的概率校准

使用FrozenEstimator的示例

使用FrozenEstimator的示例

由Sphinx-Gallery生成的图库