高斯混合模型椭球#

绘制使用期望最大化(GaussianMixture 类)和变分推断(具有狄利克雷过程先验的 BayesianGaussianMixture 类模型)获得的两个高斯混合的置信椭球。

这两个模型都可以访问五个组件来拟合数据。请注意,期望最大化模型将必然使用所有五个组件,而变分推断模型将有效地仅使用对良好拟合所需的组件数量。在这里我们可以看到,期望最大化模型任意地分割了一些组件,因为它试图拟合过多的组件,而狄利克雷过程模型会自动调整其状态数量。

本示例没有展示这一点,因为我们处于低维空间,但是狄利克雷过程模型的另一个优点是,即使每个集群的示例数量少于数据中的维度,它也能有效地拟合完整的协方差矩阵,这是由于推断算法的正则化特性。

Gaussian Mixture, Bayesian Gaussian Mixture with a Dirichlet process prior
/home/circleci/project/sklearn/mixture/_base.py:269: ConvergenceWarning:

Best performing initialization did not converge. Try different init parameters, or increase max_iter, tol, or check for degenerate data.

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import itertools

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from scipy import linalg

from sklearn import mixture

color_iter = itertools.cycle(["navy", "c", "cornflowerblue", "gold", "darkorange"])


def plot_results(X, Y_, means, covariances, index, title):
    splot = plt.subplot(2, 1, 1 + index)
    for i, (mean, covar, color) in enumerate(zip(means, covariances, color_iter)):
        v, w = linalg.eigh(covar)
        v = 2.0 * np.sqrt(2.0) * np.sqrt(v)
        u = w[0] / linalg.norm(w[0])
        # as the DP will not use every component it has access to
        # unless it needs it, we shouldn't plot the redundant
        # components.
        if not np.any(Y_ == i):
            continue
        plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], 0.8, color=color)

        # Plot an ellipse to show the Gaussian component
        angle = np.arctan(u[1] / u[0])
        angle = 180.0 * angle / np.pi  # convert to degrees
        ell = mpl.patches.Ellipse(mean, v[0], v[1], angle=180.0 + angle, color=color)
        ell.set_clip_box(splot.bbox)
        ell.set_alpha(0.5)
        splot.add_artist(ell)

    plt.xlim(-9.0, 5.0)
    plt.ylim(-3.0, 6.0)
    plt.xticks(())
    plt.yticks(())
    plt.title(title)


# Number of samples per component
n_samples = 500

# Generate random sample, two components
np.random.seed(0)
C = np.array([[0.0, -0.1], [1.7, 0.4]])
X = np.r_[
    np.dot(np.random.randn(n_samples, 2), C),
    0.7 * np.random.randn(n_samples, 2) + np.array([-6, 3]),
]

# Fit a Gaussian mixture with EM using five components
gmm = mixture.GaussianMixture(n_components=5, covariance_type="full").fit(X)
plot_results(X, gmm.predict(X), gmm.means_, gmm.covariances_, 0, "Gaussian Mixture")

# Fit a Dirichlet process Gaussian mixture using five components
dpgmm = mixture.BayesianGaussianMixture(n_components=5, covariance_type="full").fit(X)
plot_results(
    X,
    dpgmm.predict(X),
    dpgmm.means_,
    dpgmm.covariances_,
    1,
    "Bayesian Gaussian Mixture with a Dirichlet process prior",
)

plt.show()

脚本总运行时间:(0 分钟 0.223 秒)

相关示例

高斯混合模型正弦曲线

高斯混合模型正弦曲线

变分贝叶斯高斯混合的浓度先验类型分析

变分贝叶斯高斯混合的浓度先验类型分析

GMM 协方差

GMM 协方差

高斯混合模型选择

高斯混合模型选择

由 Sphinx-Gallery 生成的图库