cluster_optics_dbscan#

sklearn.cluster.cluster_optics_dbscan(*, reachability, core_distances, ordering, eps)[source]#

对任意epsilon执行DBSCAN提取。

提取集群运行时间为线性时间。请注意,这会导致labels_接近具有相似设置和epsDBSCAN,只有当eps接近max_eps时才如此。

参数:
reachabilityndarray of shape (n_samples,)

由OPTICS计算的可达距离(reachability_)。

core_distancesndarray of shape (n_samples,)

点变成核心点的距离(core_distances_)。

orderingndarray of shape (n_samples,)

OPTICS排序后的点索引(ordering_)。

epsfloat

DBSCAN 的 eps 参数。必须设置为小于 max_eps。如果 epsmax_eps 彼此接近,则结果将接近 DBSCAN 算法。

返回值:
labels_形状为 (n_samples,) 的数组

估计的标签。

示例

>>> import numpy as np
>>> from sklearn.cluster import cluster_optics_dbscan, compute_optics_graph
>>> X = np.array([[1, 2], [2, 5], [3, 6],
...               [8, 7], [8, 8], [7, 3]])
>>> ordering, core_distances, reachability, predecessor = compute_optics_graph(
...     X,
...     min_samples=2,
...     max_eps=np.inf,
...     metric="minkowski",
...     p=2,
...     metric_params=None,
...     algorithm="auto",
...     leaf_size=30,
...     n_jobs=None,
... )
>>> eps = 4.5
>>> labels = cluster_optics_dbscan(
...     reachability=reachability,
...     core_distances=core_distances,
...     ordering=ordering,
...     eps=eps,
... )
>>> labels
array([0, 0, 0, 1, 1, 1])