extract_patches_2d#
- sklearn.feature_extraction.image.extract_patches_2d(image, patch_size, *, max_patches=None, random_state=None)[source]#
将 2D 图像重塑为补丁集合。
提取的补丁(patches)分配在一个专用的数组中。
Read more in the User Guide.
- 参数:
- image形状为 (image_height, image_width) 或 (image_height, image_width, n_channels) 的 ndarray
原始图像数据。对于彩色图像,最后一个维度指定通道:RGB 图像的
n_channels=3。- patch_size整型元组 (patch_height, patch_width)
一个补丁的尺寸。
- max_patches整型或浮点型,默认值=None
要提取的最大补丁数。如果
max_patches是一个介于 0 和 1 之间的浮点数,则它被视为总补丁数的比例。如果max_patches为 None,则对应于可以提取的补丁总数。- random_stateint, RandomState instance, default=None
当
max_patches不为 None 时,用于随机抽样的随机数生成器。使用整数使随机性具有确定性。参见 词汇表。
- 返回:
- patches形状为 (n_patches, patch_height, patch_width) 或 (n_patches, patch_height, patch_width, n_channels) 的数组
从图像中提取的补丁集合,其中
n_patches是max_patches或可以提取的补丁总数。
示例
>>> from sklearn.datasets import load_sample_image >>> from sklearn.feature_extraction import image >>> # Use the array data from the first image in this dataset: >>> one_image = load_sample_image("china.jpg") >>> print('Image shape: {}'.format(one_image.shape)) Image shape: (427, 640, 3) >>> patches = image.extract_patches_2d(one_image, (2, 2)) >>> print('Patches shape: {}'.format(patches.shape)) Patches shape: (272214, 2, 2, 3) >>> # Here are just two of these patches: >>> print(patches[1]) [[[174 201 231] [174 201 231]] [[173 200 230] [173 200 230]]] >>> print(patches[800]) [[[187 214 243] [188 215 244]] [[187 214 243] [188 215 244]]]