extract_patches_2d#

sklearn.feature_extraction.image.extract_patches_2d(image, patch_size, *, max_patches=None, random_state=None)[source]#

将 2D 图像重塑为补丁集合。

提取的补丁(patches)分配在一个专用的数组中。

Read more in the User Guide.

参数:
image形状为 (image_height, image_width) 或 (image_height, image_width, n_channels) 的 ndarray

原始图像数据。对于彩色图像,最后一个维度指定通道:RGB 图像的 n_channels=3

patch_size整型元组 (patch_height, patch_width)

一个补丁的尺寸。

max_patches整型或浮点型,默认值=None

要提取的最大补丁数。如果 max_patches 是一个介于 0 和 1 之间的浮点数,则它被视为总补丁数的比例。如果 max_patches 为 None,则对应于可以提取的补丁总数。

random_stateint, RandomState instance, default=None

max_patches 不为 None 时,用于随机抽样的随机数生成器。使用整数使随机性具有确定性。参见 词汇表

返回:
patches形状为 (n_patches, patch_height, patch_width) 或 (n_patches, patch_height, patch_width, n_channels) 的数组

从图像中提取的补丁集合,其中 n_patchesmax_patches 或可以提取的补丁总数。

示例

>>> from sklearn.datasets import load_sample_image
>>> from sklearn.feature_extraction import image
>>> # Use the array data from the first image in this dataset:
>>> one_image = load_sample_image("china.jpg")
>>> print('Image shape: {}'.format(one_image.shape))
Image shape: (427, 640, 3)
>>> patches = image.extract_patches_2d(one_image, (2, 2))
>>> print('Patches shape: {}'.format(patches.shape))
Patches shape: (272214, 2, 2, 3)
>>> # Here are just two of these patches:
>>> print(patches[1])
[[[174 201 231]
  [174 201 231]]
 [[173 200 230]
  [173 200 230]]]
>>> print(patches[800])
[[[187 214 243]
  [188 215 244]]
 [[187 214 243]
  [188 215 244]]]