K均值#
- sklearn.cluster.k_means(X, n_clusters, *, sample_weight=None, init='k-means++', n_init='auto', max_iter=300, verbose=False, tol=0.0001, random_state=None, copy_x=True, algorithm='lloyd', return_n_iter=False)[source]#
执行K均值聚类算法。
更多信息请阅读用户指南。
- 参数:
- X形状为 (n_samples, n_features) 的 {array-like, sparse matrix}
要聚类的观测值。需要注意的是,数据将被转换为C顺序,如果给定的数据不是C连续的,这将导致内存复制。
- n_clustersint
要形成的聚类数量以及要生成的质心数量。
- sample_weight形状为 (n_samples,) 的 array-like,默认为 None
X
中每个观测值的权重。如果为None
,则所有观测值都被赋予相同的权重。如果init
是可调用对象或用户提供的数组,则在初始化期间不使用sample_weight
。- init{'k-means++', 'random'},可调用对象或形状为 (n_clusters, n_features) 的 array-like,默认为 'k-means++'
初始化方法
'k-means++'
:以一种巧妙的方式选择k均值聚类的初始聚类中心,以加快收敛速度。更多详情请参见k_init中的注释部分。'random'
:从数据中随机选择n_clusters
个观测值(行)作为初始质心。如果传入数组,则其形状应为
(n_clusters, n_features)
,并给出初始中心。如果传入可调用对象,则它应该接受参数
X
、n_clusters
和随机状态,并返回一个初始化。
- n_init'auto' 或 int,默认为 “auto”
使用不同的质心种子运行k均值算法的次数。最终结果将是n_init次连续运行中就惯性而言的最佳输出。
当
n_init='auto'
时,运行次数取决于init的值:如果使用init='random'
或init
是可调用对象,则为10;如果使用init='k-means++'
或init
是类似数组的对象,则为1。1.2版本新增:为
n_init
添加了'auto'选项。1.4版本变更:
n_init
的默认值更改为'auto'
。- max_iterint,默认为 300
要运行的k均值算法的最大迭代次数。
- verbosebool,默认为 False
详细模式。
- tolfloat,默认为 1e-4
关于两次连续迭代的聚类中心差异的Frobenius范数的相对容差,用于声明收敛。
- random_stateint,RandomState 实例或 None,默认为 None
确定质心初始化的随机数生成。使用整数使随机性确定性。参见词汇表。
- copy_xbool,默认为 True
预计算距离时,首先对数据进行居中处理更精确。如果
copy_x
为True(默认值),则原始数据不会被修改。如果为False,则原始数据会被修改,并在函数返回之前放回,但可能会引入小的数值差异。请注意,如果原始数据不是C连续的,即使copy_x
为False,也会进行复制。如果原始数据是稀疏的,但不是CSR格式,即使copy_x
为False,也会进行复制。- algorithm{'lloyd', 'elkan'},默认为 'lloyd'
要使用的K均值算法。经典的EM风格算法是
"lloyd"
。"elkan"
变体可以通过使用三角不等式在一些具有明确定义的聚类的dataset上更高效。但是,由于分配了一个形状为(n_samples, n_clusters)
的额外数组,它更占用内存。0.18版本变更:添加了Elkan算法
1.1版本变更:将“full”重命名为“lloyd”,并弃用“auto”和“full”。将“auto”更改为使用“lloyd”而不是“elkan”。
- return_n_iter布尔值,默认为False
是否返回迭代次数。
- 返回:
- centroid形状为 (n_clusters, n_features) 的ndarray
k-means算法最后一次迭代找到的质心。
- label形状为 (n_samples,) 的ndarray
label[i]
表示第 i 个观测值距离最近的质心的代码或索引。- inertia浮点数
惯性准则的最终值(训练集中所有观测值到最近质心的平方距离之和)。
- best_n_iter整数
对应最佳结果的迭代次数。仅当
return_n_iter
设置为 True 时返回。
示例
>>> import numpy as np >>> from sklearn.cluster import k_means >>> X = np.array([[1, 2], [1, 4], [1, 0], ... [10, 2], [10, 4], [10, 0]]) >>> centroid, label, inertia = k_means( ... X, n_clusters=2, n_init="auto", random_state=0 ... ) >>> centroid array([[10., 2.], [ 1., 2.]]) >>> label array([1, 1, 1, 0, 0, 0], dtype=int32) >>> inertia 16.0