RegressorChain#
- class sklearn.multioutput.RegressorChain(estimator=None, *, order=None, cv=None, random_state=None, verbose=False, base_estimator='deprecated')[source]#
将回归器排列成链的多标签模型。
Each model makes a prediction in the order specified by the chain using all of the available features provided to the model plus the predictions of models that are earlier in the chain.
Read more in the User Guide.
0.20 版本新增。
- 参数:
- estimatorestimator
The base estimator from which the regressor chain is built.
- orderarray-like of shape (n_outputs,) or ‘random’, default=None
If
None, the order will be determined by the order of columns in the label matrix Y.order = [0, 1, 2, ..., Y.shape[1] - 1]
The order of the chain can be explicitly set by providing a list of integers. For example, for a chain of length 5.
order = [1, 3, 2, 4, 0]
means that the first model in the chain will make predictions for column 1 in the Y matrix, the second model will make predictions for column 3, etc.
If order is ‘random’ a random ordering will be used.
- cvint, cross-validation generator or an iterable, default=None
Determines whether to use cross validated predictions or true labels for the results of previous estimators in the chain. Possible inputs for cv are
None, to use true labels when fitting,
integer, to specify the number of folds in a (Stratified)KFold,
一个可迭代对象,产生索引数组形式的 (训练集, 测试集) 拆分。
- random_stateint, RandomState instance or None, optional (default=None)
If
order='random', determines random number generation for the chain order. In addition, it controls the random seed given at eachbase_estimatorat each chaining iteration. Thus, it is only used whenbase_estimatorexposes arandom_state. Pass an int for reproducible output across multiple function calls. See Glossary.- verbosebool, default=False
If True, chain progress is output as each model is completed.
1.2 版本新增。
- base_estimatorestimator, default=”deprecated”
Use
estimatorinstead.Deprecated since version 1.7:
base_estimatoris deprecated and will be removed in 1.9. Useestimatorinstead.
- 属性:
- estimators_list
A list of clones of base_estimator.
- order_list
The order of labels in the classifier chain.
- n_features_in_int
Number of features seen during fit. Only defined if the underlying
base_estimatorexposes such an attribute when fit.0.24 版本新增。
- feature_names_in_shape 为 (
n_features_in_,) 的 ndarray 在 fit 期间看到的特征名称。仅当
X具有全部为字符串的特征名称时才定义。1.0 版本新增。
另请参阅
ClassifierChainEquivalent for classification.
MultiOutputRegressorLearns each output independently rather than chaining.
示例
>>> from sklearn.multioutput import RegressorChain >>> from sklearn.linear_model import LogisticRegression >>> logreg = LogisticRegression(solver='lbfgs') >>> X, Y = [[1, 0], [0, 1], [1, 1]], [[0, 2], [1, 1], [2, 0]] >>> chain = RegressorChain(logreg, order=[0, 1]).fit(X, Y) >>> chain.predict(X) array([[0., 2.], [1., 1.], [2., 0.]])
- fit(X, Y, **fit_params)[source]#
将模型拟合到数据矩阵 X 和目标 Y。
- 参数:
- Xshape 为 (n_samples, n_features) 的 {array-like, sparse matrix}
输入数据。
- Y形状为 (n_samples, n_classes) 的类数组
目标值。
- **fit_paramsdict of string -> object
Parameters passed to the
fitmethod at each step of the regressor chain.0.23 版本新增。
- 返回:
- selfobject
返回拟合的实例。
- get_metadata_routing()[source]#
获取此对象的元数据路由。
请查阅 用户指南,了解路由机制如何工作。
在版本 1.3 中新增。
- 返回:
- routingMetadataRouter
封装路由信息的
MetadataRouter。
- get_params(deep=True)[source]#
获取此估计器的参数。
- 参数:
- deepbool, default=True
如果为 True,将返回此估计器以及包含的子对象(如果它们是估计器)的参数。
- 返回:
- paramsdict
参数名称映射到其值。
- predict(X)[source]#
Predict on the data matrix X using the ClassifierChain model.
- 参数:
- Xshape 为 (n_samples, n_features) 的 {array-like, sparse matrix}
输入数据。
- 返回:
- Y_predarray-like of shape (n_samples, n_classes)
预测值。
- score(X, y, sample_weight=None)[source]#
返回测试数据的 决定系数。
The coefficient of determination, \(R^2\), is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares
((y_true - y_pred)** 2).sum()and \(v\) is the total sum of squares((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value ofy, disregarding the input features, would get a \(R^2\) score of 0.0.- 参数:
- Xshape 为 (n_samples, n_features) 的 array-like
测试样本。对于某些估计器,这可能是一个预先计算的核矩阵或一个通用对象列表,形状为
(n_samples, n_samples_fitted),其中n_samples_fitted是用于估计器拟合的样本数。- yshape 为 (n_samples,) 或 (n_samples, n_outputs) 的 array-like
X的真实值。- sample_weightshape 为 (n_samples,) 的 array-like, default=None
样本权重。
- 返回:
- scorefloat
self.predict(X)相对于y的 \(R^2\)。
注意事项
The \(R^2\) score used when calling
scoreon a regressor usesmultioutput='uniform_average'from version 0.23 to keep consistent with default value ofr2_score. This influences thescoremethod of all the multioutput regressors (except forMultiOutputRegressor).
- set_params(**params)[source]#
设置此估计器的参数。
此方法适用于简单的估计器以及嵌套对象(如
Pipeline)。后者具有<component>__<parameter>形式的参数,以便可以更新嵌套对象的每个组件。- 参数:
- **paramsdict
估计器参数。
- 返回:
- selfestimator instance
估计器实例。
- set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') RegressorChain[source]#
配置是否应请求元数据以传递给
score方法。请注意,此方法仅在以下情况下相关:此估计器用作 元估计器 中的子估计器,并且通过
enable_metadata_routing=True启用了元数据路由(请参阅sklearn.set_config)。请查看 用户指南 以了解路由机制的工作原理。每个参数的选项如下:
True:请求元数据,如果提供则传递给score。如果未提供元数据,则忽略该请求。False:不请求元数据,元估计器不会将其传递给score。None:不请求元数据,如果用户提供元数据,元估计器将引发错误。str:应将元数据以给定别名而不是原始名称传递给元估计器。
默认值 (
sklearn.utils.metadata_routing.UNCHANGED) 保留现有请求。这允许您更改某些参数的请求而不更改其他参数。在版本 1.3 中新增。
- 参数:
- sample_weightstr, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED
score方法中sample_weight参数的元数据路由。
- 返回:
- selfobject
更新后的对象。