计算时间#

总执行时间 19:25.323,共计 279 个文件(来自所有示例库

示例

时间

内存 (MB)

基于模型和序列的特征选择 (../examples/feature_selection/plot_select_from_model_diabetes.py)

00:55.641

0.0

比较随机森林和直方图梯度提升模型 (../examples/ensemble/plot_forest_hist_grad_boosting_comparison.py)

00:54.432

0.0

异常点检测估计器评估 (../examples/miscellaneous/plot_outlier_detection_bench.py)

00:44.039

0.0

使用Pipeline和GridSearchCV选择降维方法 (../examples/compose/plot_compare_reduction.py)

00:40.953

0.0

后验调整决策函数的截止点 (../examples/model_selection/plot_tuned_decision_threshold.py)

00:31.288

0.0

文本特征提取与评估示例管道 (../examples/model_selection/plot_grid_search_text_feature_extraction.py)

00:26.573

0.0

使用字典学习进行图像去噪 (../examples/decomposition/plot_image_denoising.py)

00:25.050

0.0

随机梯度下降的早期停止 (../examples/linear_model/plot_sgd_early_stopping.py)

00:25.012

0.0

为成本敏感学习后验调整决策阈值 (../examples/model_selection/plot_cost_sensitive_learning.py)

00:24.389

0.0

绘制学习曲线和检查模型可伸缩性 (../examples/model_selection/plot_learning_curve.py)

00:23.630

0.0

部分依赖图和个体条件期望图 (../examples/inspection/plot_partial_dependence.py)

00:22.278

0.0

目标编码器与其他编码器比较 (../examples/preprocessing/plot_target_encoder.py)

00:22.041

0.0

使用多项式核近似的可伸缩学习 (../examples/kernel_approximation/plot_scalable_poly_kernels.py)

00:21.869

0.0

使用堆叠组合预测器 (../examples/ensemble/plot_stack_predictors.py)

00:21.747

0.0

手写数字上的流形学习:局部线性嵌入、Isomap… (../examples/manifold/plot_lle_digits.py)

00:19.868

0.0

直方图梯度提升树中的特征 (../examples/ensemble/plot_hgbt_regression.py)

00:19.658

0.0

泊松回归和非正态损失 (../examples/linear_model/plot_poisson_regression_non_normal_loss.py)

00:19.324

0.0

预测延迟 (../examples/applications/plot_prediction_latency.py)

00:18.815

0.0

多类训练元估计器概述 (../examples/multiclass/plot_multiclass_overview.py)

00:18.752

0.0

平衡模型复杂性和交叉验证分数 (../examples/model_selection/plot_grid_search_refit_callable.py)

00:17.747

0.0

缩放SVC的正则化参数 (../examples/svm/plot_svm_scale_c.py)

00:17.612

0.0

瑞士卷和瑞士孔降维 (../examples/manifold/plot_swissroll.py)

00:16.853

0.0

HDBSCAN聚类算法演示 (../examples/cluster/plot_hdbscan.py)

00:14.147

0.0

时间相关特征工程 (../examples/applications/plot_cyclical_feature_engineering.py)

00:13.663

0.0

scikit-learn 0.24 发布亮点 (../examples/release_highlights/plot_release_highlights_0_24_0.py)

00:12.897

0.0

线性模型系数解释中的常见误区 (../examples/inspection/plot_linear_model_coefficient_interpretation.py)

00:12.594

0.0

流形学习方法比较 (../examples/manifold/plot_compare_methods.py)

00:12.349

0.0

使用置换检验分类分数的显著性 (../examples/model_selection/plot_permutation_tests_for_classification.py)

00:11.711

0.0

使用非负矩阵分解和潜在狄利克雷分配进行主题提取 (../examples/applications/plot_topics_extraction_with_nmf_lda.py)

00:11.584

0.0

使用随机投影进行嵌入的Johnson-Lindenstrauss界 (../examples/miscellaneous/plot_johnson_lindenstrauss_bound.py)

00:10.618

0.0

梯度提升回归的预测区间 (../examples/ensemble/plot_gradient_boosting_quantile.py)

00:10.113

0.0

时间序列预测的滞后特征 (../examples/applications/plot_time_series_lagged_features.py)

00:09.613

0.0

交叉验证网格搜索的自定义重新拟合策略 (../examples/model_selection/plot_grid_search_digits.py)

00:09.533

0.0

梯度提升袋外估计 (../examples/ensemble/plot_gradient_boosting_oob.py)

00:09.342

0.0

构建估计器前填充缺失值 (../examples/impute/plot_missing_values.py)

00:08.551

0.0

比较不同缩放器对含异常值数据的影响 (../examples/preprocessing/plot_all_scaling.py)

00:08.537

0.0

文本数据的核外分类 (../examples/applications/plot_out_of_core_classification.py)

00:08.501

0.0

使用多项式逻辑回归+L1对MNIST进行分类 (../examples/linear_model/plot_sparse_logistic_regression_mnist.py)

00:08.100

0.0

梯度提升正则化 (../examples/ensemble/plot_gradient_boosting_regularization.py)

00:07.957

0.0

核岭回归和SVR的比较 (../examples/miscellaneous/plot_kernel_ridge_regression.py)

00:07.914

0.0

截断球体上的流形学习方法 (../examples/manifold/plot_manifold_sphere.py)

00:07.901

0.0

cross_val_score 和 GridSearchCV 的多指标评估演示 (../examples/model_selection/plot_multi_metric_evaluation.py)

00:07.888

0.0

用于分类的普通、Ledoit-Wolf 和 OAS 线性判别分析 (../examples/classification/plot_lda.py)

00:07.729

0.0

使用k-means对文本文档进行聚类 (../examples/text/plot_document_clustering.py)

00:07.550

0.0

保险索赔上的Tweedie回归 (../examples/linear_model/plot_tweedie_regression_insurance_claims.py)

00:07.329

0.0

人脸数据集分解 (../examples/decomposition/plot_faces_decomposition.py)

00:06.996

0.0

使用核PCA进行图像去噪 (../examples/applications/plot_digits_denoising.py)

00:06.834

0.0

网格搜索和逐次减半的比较 (../examples/model_selection/plot_successive_halving_heatmap.py)

00:06.831

0.0

物种分布建模 (../examples/applications/plot_species_distribution_modeling.py)

00:06.623

0.0

变分贝叶斯高斯混合的集中先验类型分析 (../examples/mixture/plot_concentration_prior.py)

00:06.602

0.0

文本数据集上的半监督分类 (../examples/semi_supervised/plot_semi_supervised_newsgroups.py)

00:06.562

0.0

使用稀疏特征对文本文档进行分类 (../examples/text/plot_document_classification_20newsgroups.py)

00:06.520

0.0

MNIST上MLP权重的可视化 (../examples/neural_networks/plot_mnist_filters.py)

00:06.323

0.0

在鸢尾花数据集上绘制树集成模型的决策面 (../examples/ensemble/plot_forest_iris.py)

00:06.294

0.0

嵌套交叉验证与非嵌套交叉验证 (../examples/model_selection/plot_nested_cross_validation_iris.py)

00:06.277

0.0

使用特征脸和SVM进行人脸识别示例 (../examples/applications/plot_face_recognition.py)

00:06.254

0.0

使用谱协同聚类算法对文档进行双向聚类 (../examples/bicluster/plot_bicluster_newsgroups.py)

00:06.193

0.0

高斯过程回归(GPR)估计数据噪声水平的能力 (../examples/gaussian_process/plot_gpr_noisy.py)

00:05.820

0.0

在玩具数据集上比较不同的聚类算法 (../examples/cluster/plot_cluster_comparison.py)

00:05.591

0.0

在20newgroups数据集上进行多类稀疏逻辑回归 (../examples/linear_model/plot_sparse_logistic_regression_20newsgroups.py)

00:05.469

0.0

使用线性核和非线性核的支持向量回归 (SVR) (../examples/svm/plot_svm_regression.py)

00:05.393

0.0

使用IterativeImputer的变体填充缺失值 (../examples/impute/plot_iterative_imputer_variants_comparison.py)

00:05.374

0.0

FeatureHasher和DictVectorizer比较 (../examples/text/plot_hashing_vs_dict_vectorizer.py)

00:05.316

0.0

scikit-learn 1.2 发布亮点 (../examples/release_highlights/plot_release_highlights_1_2_0.py)

00:05.183

0.0

模型复杂性影响 (../examples/applications/plot_model_complexity_influence.py)

00:05.164

0.0

自训练中阈值变化的影响 (../examples/semi_supervised/plot_self_training_varying_threshold.py)

00:04.996

0.0

RBF SVM参数 (../examples/svm/plot_rbf_parameters.py)

00:04.929

0.0

将希腊硬币图片分割成区域 (../examples/cluster/plot_coin_segmentation.py)

00:04.828

0.0

逐次减半迭代 (../examples/model_selection/plot_successive_halving_iterations.py)

00:04.778

0.0

模型正则化对训练误差和测试误差的影响 (../examples/model_selection/plot_train_error_vs_test_error.py)

00:04.730

0.0

多类AdaBoosted决策树 (../examples/ensemble/plot_adaboost_multiclass.py)

00:04.388

0.0

使用高斯过程回归(GPR)预测Mona Loa数据集上的CO2水平 (../examples/gaussian_process/plot_gpr_co2.py)

00:04.369

0.0

核岭回归和高斯过程回归的比较 (../examples/gaussian_process/plot_compare_gpr_krr.py)

00:04.333

0.0

多重共线性或相关特征的置换重要性 (../examples/inspection/plot_permutation_importance_multicollinear.py)

00:04.272

0.0

置换重要性与随机森林特征重要性 (MDI) 的比较 (../examples/inspection/plot_permutation_importance.py)

00:04.207

0.0

核密度估计 (../examples/neighbors/plot_digits_kde_sampling.py)

00:04.030

0.0

比较随机搜索和网格搜索进行超参数估计 (../examples/model_selection/plot_randomized_search.py)

00:03.871

0.0

随机森林的OOB误差 (../examples/ensemble/plot_ensemble_oob.py)

00:03.676

0.0

梯度提升中的类别特征支持 (../examples/ensemble/plot_gradient_boosting_categorical.py)

00:03.595

0.0

特征离散化 (../examples/preprocessing/plot_discretization_classification.py)

00:03.487

0.0

物种分布的核密度估计 (../examples/neighbors/plot_species_kde.py)

00:03.383

0.0

比较BIRCH和MiniBatchKMeans (../examples/cluster/plot_birch_vs_minibatchkmeans.py)

00:03.381

0.0

在玩具数据集上比较异常检测算法进行异常点检测 (../examples/miscellaneous/plot_anomaly_comparison.py)

00:03.239

0.0

梯度提升中的早期停止 (../examples/ensemble/plot_gradient_boosting_early_stopping.py)

00:03.175

0.0

递归特征消除 (../examples/feature_selection/plot_rfe_digits.py)

00:03.174

0.0

t-SNE:不同困惑度值对形状的影响 (../examples/manifold/plot_t_sne_perplexity.py)

00:03.074

0.0

分类器校准的比较 (../examples/calibration/plot_compare_calibration.py)

00:02.941

0.0

使用概率PCA和因子分析(FA)进行模型选择 (../examples/decomposition/plot_pca_vs_fa_model_selection.py)

00:02.888

0.0

使用树集成进行特征变换 (../examples/ensemble/plot_feature_transformation.py)

00:02.661

0.0

绘制分类概率 (../examples/classification/plot_classification_probability.py)

00:02.612

0.0

异构数据源的列转换器 (../examples/compose/plot_column_transformer.py)

00:02.557

0.0

鸢尾花数据集上的高斯过程分类(GPC) (../examples/gaussian_process/plot_gpc_iris.py)

00:02.556

0.0

比较MLPClassifier的随机学习策略 (../examples/neural_networks/plot_mlp_training_curves.py)

00:02.556

0.0

受限玻尔兹曼机特征用于数字分类 (../examples/neural_networks/plot_rbm_logistic_classification.py)

00:02.439

0.0

稳健协方差估计与经验协方差估计 (../examples/covariance/plot_robust_vs_empirical_covariance.py)

00:02.433

0.0

可视化股票市场结构 (../examples/applications/plot_stock_market.py)

00:02.416

0.0

使用部分依赖进行高级绘图 (../examples/miscellaneous/plot_partial_dependence_visualization_api.py)

00:02.362

0.0

Ledoit-Wolf与OAS估计的比较 (../examples/covariance/plot_lw_vs_oas.py)

00:02.298

0.0

概率校准曲线 (../examples/calibration/plot_calibration_curve.py)

00:02.297

0.0

scikit-learn 1.4 发布亮点 (../examples/release_highlights/plot_release_highlights_1_4_0.py)

00:02.225

0.0

人脸部分字典的在线学习 (../examples/cluster/plot_dict_face_patches.py)

00:02.129

0.0

机器学习无法推断因果效应 (../examples/inspection/plot_causal_interpretation.py)

00:02.088

0.0

矢量量化示例 (../examples/cluster/plot_face_compress.py)

00:02.082

0.0

分类器比较 (../examples/classification/plot_classifier_comparison.py)

00:02.062

0.0

鸢尾花数据集上的主成分分析(PCA) (../examples/decomposition/plot_pca_iris.py)

00:02.021

0.0

使用高斯过程分类(GPC)进行概率预测 (../examples/gaussian_process/plot_gpc.py)

00:01.990

0.0

归纳聚类 (../examples/cluster/plot_inductive_clustering.py)

00:01.957

0.0

在玩具数据集上比较不同的层次链接方法 (../examples/cluster/plot_linkage_comparison.py)

00:01.926

0.0

将数据映射到正态分布 (../examples/preprocessing/plot_map_data_to_normal.py)

00:01.859

0.0

有结构和无结构的凝聚聚类 (../examples/cluster/plot_agglomerative_clustering.py)

00:01.845

0.0

多层感知机中正则化的变化 (../examples/neural_networks/plot_mlp_alpha.py)

00:01.812

0.0

使用分类器链进行多标签分类 (../examples/multioutput/plot_classifier_chain_yeast.py)

00:01.779

0.0

稳健线性估计器拟合 (../examples/linear_model/plot_robust_fit.py)

00:01.766

0.0

使用类别似然比衡量分类性能 (../examples/model_selection/plot_likelihood_ratios.py)

00:01.741

0.0

使用邻域成分分析进行降维 (../examples/neighbors/plot_nca_dim_reduction.py)

00:01.621

0.0

特征缩放的重要性 (../examples/preprocessing/plot_scaling_importance.py)

00:01.607

0.0

使用多输出估计器进行人脸补全 (../examples/miscellaneous/plot_multioutput_face_completion.py)

00:01.604

0.0

RBF核的显式特征映射近似 (../examples/miscellaneous/plot_kernel_approximation.py)

00:01.582

0.0

scikit-learn 1.3 发布亮点 (../examples/release_highlights/plot_release_highlights_1_3_0.py)

00:01.577

0.0

使用网格搜索进行模型的统计比较 (../examples/model_selection/plot_grid_search_stats.py)

00:01.514

0.0

不同核函数的先验和后验高斯过程图示 (../examples/gaussian_process/plot_gpr_prior_posterior.py)

00:01.490

0.0

OPTICS聚类算法演示 (../examples/cluster/plot_optics.py)

00:01.474

0.0

scikit-learn 0.22 发布亮点 (../examples/release_highlights/plot_release_highlights_0_22_0.py)

00:01.450

0.0

压缩感知:使用L1先验(Lasso)进行断层扫描重建 (../examples/applications/plot_tomography_l1_reconstruction.py)

00:01.421

0.0

高斯混合模型选择 (../examples/mixture/plot_gmm_selection.py)

00:01.407

0.0

数字2D嵌入上的各种凝聚聚类 (../examples/cluster/plot_digits_linkage.py)

00:01.402

0.0

使用不同SVM核绘制分类边界 (../examples/svm/plot_svm_kernels.py)

00:01.350

0.0

3类分类的概率校准 (../examples/calibration/plot_calibration_multiclass.py)

00:01.338

0.0

回归模型中目标变换的影响 (../examples/compose/plot_transformed_target.py)

00:01.317

0.0

梯度提升回归 (../examples/ensemble/plot_gradient_boosting_regression.py)

00:01.309

0.0

密集和稀疏数据上的Lasso (../examples/linear_model/plot_lasso_dense_vs_sparse_data.py)

00:01.288

0.0

k-means初始化影响的经验评估 (../examples/cluster/plot_kmeans_stability_low_dim_dense.py)

00:01.253

0.0

最近邻缓存 (../examples/neighbors/plot_caching_nearest_neighbors.py)

00:01.200

0.0

混合类型的列转换器 (../examples/compose/plot_column_transformer_mixed_types.py)

00:01.172

0.0

可视化scikit-learn中的交叉验证行为 (../examples/model_selection/plot_cv_indices.py)

00:01.158

0.0

单一估计器与 bagging:偏差-方差分解 (../examples/ensemble/plot_bias_variance.py)

00:01.151

0.0

手写数字数据上的K-Means聚类演示 (../examples/cluster/plot_kmeans_digits.py)

00:01.123

0.0

k-means假设的演示 (../examples/cluster/plot_kmeans_assumptions.py)

00:01.071

0.0

使用轮廓分析在KMeans聚类中选择聚类数量 (../examples/cluster/plot_kmeans_silhouette_analysis.py)

00:01.067

0.0

使用不同度量的凝聚聚类 (../examples/cluster/plot_agglomerative_clustering_metrics.py)

00:01.062

0.0

聚类性能评估中的偶然性调整 (../examples/cluster/plot_adjusted_for_chance_measures.py)

00:01.057

0.0

二分K-Means和常规K-Means性能比较 (../examples/cluster/plot_bisect_kmeans.py)

00:01.051

0.0

SVM平局处理示例 (../examples/svm/plot_svm_tie_breaking.py)

00:01.020

0.0

管道:链式连接PCA和逻辑回归 (../examples/compose/plot_digits_pipe.py)

00:01.014

0.0

scikit-learn 1.1 发布亮点 (../examples/release_highlights/plot_release_highlights_1_1_0.py)

00:00.983

0.0

绘制个体和投票回归预测 (../examples/ensemble/plot_voting_regressor.py)

00:00.968

0.0

Lasso模型选择:AIC-BIC / 交叉验证 (../examples/linear_model/plot_lasso_model_selection.py)

00:00.901

0.0

使用树森林的特征重要性 (../examples/ensemble/plot_forest_importances.py)

00:00.899

0.0

Lasso、Lasso-LARS和Elastic Net路径 (../examples/linear_model/plot_lasso_lasso_lars_elasticnet_path.py)

00:00.886

0.0

分位数回归 (../examples/linear_model/plot_quantile_regression.py)

00:00.870

0.0

鸢尾花数据集上半监督分类器与SVM的决策边界 (../examples/semi_supervised/plot_semi_supervised_versus_svm_iris.py)

00:00.856

0.0

scikit-learn 1.5 发布亮点 (../examples/release_highlights/plot_release_highlights_1_5_0.py)

00:00.781

0.0

绘制在鸢尾花数据集上训练的决策树决策面 (../examples/tree/plot_iris_dtc.py)

00:00.774

0.0

使用预计算Gram矩阵和加权样本拟合Elastic Net (../examples/linear_model/plot_elastic_net_precomputed_gram_matrix_with_weighted_samples.py)

00:00.770

0.0

带交叉验证的递归特征消除 (../examples/feature_selection/plot_rfe_with_cross_validation.py)

00:00.768

0.0

使用局部异常因子(LOF)进行新颖性检测 (../examples/neighbors/plot_lof_novelty_detection.py)

00:00.728

0.0

比较带和不带邻域成分分析的最近邻 (../examples/neighbors/plot_nca_classification.py)

00:00.723

0.0

两类AdaBoost (../examples/ensemble/plot_adaboost_twoclass.py)

00:00.669

0.0

可视化投票分类器的概率预测 (../examples/ensemble/plot_voting_decision_regions.py)

00:00.660

0.0

GMM初始化方法 (../examples/mixture/plot_gmm_init.py)

00:00.651

0.0

岭回归系数随L2正则化的变化 (../examples/linear_model/plot_ridge_coeffs.py)

00:00.645

0.0

比较线性贝叶斯回归器 (../examples/linear_model/plot_ard.py)

00:00.640

0.0

多项式和一对多逻辑回归的决策边界 (../examples/linear_model/plot_logistic_multinomial.py)

00:00.624

0.0

scikit-learn 0.23 发布亮点 (../examples/release_highlights/plot_release_highlights_0_23_0.py)

00:00.621

0.0

演示KBinsDiscretizer的不同策略 (../examples/preprocessing/plot_discretization_strategies.py)

00:00.599

0.0

多类受试者工作特征曲线(ROC) (../examples/model_selection/plot_roc.py)

00:00.599

0.0

单调约束 (../examples/ensemble/plot_monotonic_constraints.py)

00:00.587

0.0

核主成分分析 (../examples/decomposition/plot_kernel_pca.py)

00:00.548

0.0

谱双向聚类算法演示 (../examples/bicluster/plot_spectral_biclustering.py)

00:00.525

0.0

简单一维核密度估计 (../examples/neighbors/plot_kde_1d.py)

00:00.522

0.0

Theil-Sen回归 (../examples/linear_model/plot_theilsen.py)

00:00.518

0.0

比较随机森林和多输出元估计器 (../examples/ensemble/plot_random_forest_regression_multioutput.py)

00:00.511

0.0

最近邻分类 (../examples/neighbors/plot_classification.py)

00:00.498

0.0

高斯过程回归:基本入门示例 (../examples/gaussian_process/plot_gpr_noisy_targets.py)

00:00.486

0.0

主成分回归与偏最小二乘回归比较 (../examples/cross_decomposition/plot_pcr_vs_pls.py)

00:00.483

0.0

IsolationForest示例 (../examples/ensemble/plot_isolation_forest.py)

00:00.478

0.0

特征聚合与单变量选择 (../examples/cluster/plot_feature_agglomeration_vs_univariate_selection.py)

00:00.462

0.0

标签传播数字:主动学习 (../examples/semi_supervised/plot_label_propagation_digits_active_learning.py)

00:00.460

0.0

稀疏信号的L1模型 (../examples/linear_model/plot_lasso_and_elasticnet.py)

00:00.446

0.0

逻辑回归中的L1惩罚和稀疏性 (../examples/linear_model/plot_logistic_l1_l2_sparsity.py)

00:00.441

0.0

带AdaBoost的决策树回归 (../examples/ensemble/plot_adaboost_regression.py)

00:00.433

0.0

XOR数据集上的高斯过程分类(GPC)图示 (../examples/gaussian_process/plot_gpc_xor.py)

00:00.432

0.0

高斯混合模型正弦曲线 (../examples/mixture/plot_gmm_sin.py)

00:00.425

0.0

用于图像分割的谱聚类 (../examples/cluster/plot_segmentation_toy.py)

00:00.424

0.0

多项式和样条插值 (../examples/linear_model/plot_polynomial_interpolation.py)

00:00.423

0.0

使用成本复杂性剪枝对决策树进行后剪枝 (../examples/tree/plot_cost_complexity_pruning.py)

00:00.419

0.0

稀疏逆协方差估计 (../examples/covariance/plot_sparse_cov.py)

00:00.419

0.0

一类SVM与使用随机梯度下降的一类SVM比较 (../examples/linear_model/plot_sgdocsvm_vs_ocsvm.py)

00:00.418

0.0

手写数字识别 (../examples/classification/plot_digits_classification.py)

00:00.413

0.0

普通最小二乘和岭回归 (../examples/linear_model/plot_ols_ridge.py)

00:00.411

0.0

连接多种特征提取方法 (../examples/compose/plot_feature_union.py)

00:00.406

0.0

均值漂移聚类算法演示 (../examples/cluster/plot_mean_shift.py)

00:00.403

0.0

收缩协方差估计:LedoitWolf与OAS和最大似然比较 (../examples/covariance/plot_covariance_estimation.py)

00:00.400

0.0

带协方差椭圆的线性和二次判别分析 (../examples/classification/plot_lda_qda.py)

00:00.395

0.0

真实数据集上的异常点检测 (../examples/applications/plot_outlier_detection_wine.py)

00:00.395

0.0

层次聚类:结构化与非结构化Ward (../examples/cluster/plot_ward_structured_vs_unstructured.py)

00:00.378

0.0

因子分析(带旋转)以可视化模式 (../examples/decomposition/plot_varimax_fa.py)

00:00.375

0.0

精确率-召回率 (../examples/model_selection/plot_precision_recall.py)

00:00.364

0.0

2D点云上的FastICA (../examples/decomposition/plot_ica_vs_pca.py)

00:00.355

0.0

分类器的概率校准 (../examples/calibration/plot_calibration.py)

00:00.351

0.0

使用完全随机树进行哈希特征变换 (../examples/ensemble/plot_random_forest_embedding.py)

00:00.349

0.0

硬币图像上的结构化Ward层次聚类演示 (../examples/cluster/plot_coin_ward_segmentation.py)

00:00.345

0.0

使用FastICA进行盲源分离 (../examples/decomposition/plot_ica_blind_source_separation.py)

00:00.341

0.0

谱协同聚类算法演示 (../examples/bicluster/plot_spectral_coclustering.py)

00:00.336

0.0

绘制岭回归系数随正则化的变化 (../examples/linear_model/plot_ridge_path.py)

00:00.329

0.0

SVM-Anova:带单变量特征选择的SVM (../examples/svm/plot_svm_anova.py)

00:00.313

0.0

使用显示对象进行可视化 (../examples/miscellaneous/plot_display_object_visualization.py)

00:00.307

0.0

标签传播数字:性能演示 (../examples/semi_supervised/plot_label_propagation_digits.py)

00:00.295

0.0

决策树回归 (../examples/tree/plot_tree_regression.py)

00:00.291

0.0

目标编码器的内部交叉拟合 (../examples/preprocessing/plot_target_encoder_cross_val.py)

00:00.285

0.0

亲和传播聚类算法演示 (../examples/cluster/plot_affinity_propagation.py)

00:00.285

0.0

使用贝叶斯岭回归进行曲线拟合 (../examples/linear_model/plot_bayesian_ridge_curvefit.py)

00:00.280

0.0

SVM:加权样本 (../examples/svm/plot_weighted_samples.py)

00:00.271

0.0

稳健协方差估计和马氏距离相关性 (../examples/covariance/plot_mahalanobis_distances.py)

00:00.259

0.0

使用预计算字典进行稀疏编码 (../examples/decomposition/plot_sparse_coding.py)

00:00.254

0.0

SGD:惩罚项 (../examples/linear_model/plot_sgd_penalties.py)

00:00.250

0.0

多维缩放 (../examples/manifold/plot_mds.py)

00:00.236

0.0

使用多任务Lasso进行联合特征选择 (../examples/linear_model/plot_multi_task_lasso_support.py)

00:00.228

0.0

增量PCA (../examples/decomposition/plot_incremental_pca.py)

00:00.224

0.0

F检验和互信息的比较 (../examples/feature_selection/plot_f_test_vs_mi.py)

00:00.223

0.0

单变量特征选择 (../examples/feature_selection/plot_feature_selection.py)

00:00.221

0.0

离散数据结构上的高斯过程 (../examples/gaussian_process/plot_gpr_on_structured_data.py)

00:00.218

0.0

使用 KBinsDiscretizer 离散化连续特征 (../examples/preprocessing/plot_discretization.py)

00:00.209

0.0

高斯混合模型椭球体 (../examples/mixture/plot_gmm.py)

00:00.208

0.0

scikit-learn 1.7 发布亮点 (../examples/release_highlights/plot_release_highlights_1_7_0.py)

00:00.206

0.0

绘制 LinearSVC 中的支持向量 (../examples/svm/plot_linearsvc_support_vectors.py)

00:00.204

0.0

在鸢尾花数据集上绘制不同的 SVM 分类器 (../examples/svm/plot_iris_svc.py)

00:00.201

0.0

最近邻回归 (../examples/neighbors/plot_regression.py)

00:00.200

0.0

GMM 协方差 (../examples/mixture/plot_gmm_covariances.py)

00:00.195

0.0

正交匹配追踪 (../examples/linear_model/plot_omp.py)

00:00.195

0.0

检测误差权衡 (DET) 曲线 (../examples/model_selection/plot_det.py)

00:00.188

0.0

欠拟合与过拟合 (../examples/model_selection/plot_underfitting_overfitting.py)

00:00.188

0.0

绘制交叉验证预测结果 (../examples/model_selection/plot_cv_predict.py)

00:00.183

0.0

鸢尾花数据集的 LDA 和 PCA 2D 投影比较 (../examples/decomposition/plot_pca_vs_lda.py)

00:00.183

0.0

比较交叉分解方法 (../examples/cross_decomposition/plot_compare_cross_decomposition.py)

00:00.181

0.0

带交叉验证的接收者操作特征 (ROC) 曲线 (../examples/model_selection/plot_roc_crossval.py)

00:00.171

0.0

多标签分类 (../examples/miscellaneous/plot_multilabel.py)

00:00.169

0.0

L1 逻辑回归的正则化路径 (../examples/linear_model/plot_logistic_path.py)

00:00.164

0.0

DBSCAN 聚类算法演示 (../examples/cluster/plot_dbscan.py)

00:00.163

0.0

K-Means 与 MiniBatchKMeans 聚类算法比较 (../examples/cluster/plot_mini_batch_kmeans.py)

00:00.163

0.0

混淆矩阵 (../examples/model_selection/plot_confusion_matrix.py)

00:00.161

0.0

SVM:非平衡类别的分离超平面 (../examples/svm/plot_separating_hyperplane_unbalanced.py)

00:00.157

0.0

带非线性核 (RBF) 的单分类 SVM (../examples/svm/plot_oneclass.py)

00:00.153

0.0

最近质心分类 (../examples/neighbors/plot_nearest_centroid.py)

00:00.152

0.0

邻域成分分析示意图 (../examples/neighbors/plot_nca_illustration.py)

00:00.150

0.0

使用可视化 API 的 ROC 曲线 (../examples/miscellaneous/plot_roc_curve_visualization_api.py)

00:00.147

0.0

标签传播圈:学习复杂结构 (../examples/semi_supervised/plot_label_propagation_structure.py)

00:00.145

0.0

介绍 set_output API (../examples/miscellaneous/plot_set_output.py)

00:00.142

0.0

等渗回归 (../examples/miscellaneous/plot_isotonic_regression.py)

00:00.136

0.0

高斯过程分类 (GPC) 的等概率线 (../examples/gaussian_process/plot_gpc_isoprobability.py)

00:00.130

0.0

显示管道 (../examples/miscellaneous/plot_pipeline_display.py)

00:00.128

0.0

绘制随机生成的多标签数据集 (../examples/datasets/plot_random_multilabel_dataset.py)

00:00.124

0.0

高斯混合的密度估计 (../examples/mixture/plot_gmm_pdf.py)

00:00.121

0.0

逻辑函数 (../examples/linear_model/plot_logistic.py)

00:00.120

0.0

特征聚合 (../examples/cluster/plot_digits_agglomeration.py)

00:00.117

0.0

在鸢尾花数据集上绘制多类别 SGD (../examples/linear_model/plot_sgd_iris.py)

00:00.112

0.0

HuberRegressor 与 Ridge 在强异常值数据集上的比较 (../examples/linear_model/plot_huber_vs_ridge.py)

00:00.112

0.0

scikit-learn 1.6 发布亮点 (../examples/release_highlights/plot_release_highlights_1_6_0.py)

00:00.104

0.0

通过信息准则进行 Lasso 模型选择 (../examples/linear_model/plot_lasso_lars_ic.py)

00:00.097

0.0

SGD:凸损失函数 (../examples/linear_model/plot_sgd_loss_functions.py)

00:00.092

0.0

使用 RANSAC 进行鲁棒线性模型估计 (../examples/linear_model/plot_ransac.py)

00:00.090

0.0

带自定义核的 SVM (../examples/svm/plot_custom_kernel.py)

00:00.090

0.0

绘制层次聚类树状图 (../examples/cluster/plot_agglomerative_dendrogram.py)

00:00.083

0.0

使用局部异常因子 (LOF) 进行异常值检测 (../examples/neighbors/plot_lof_outlier_detection.py)

00:00.077

0.0

理解决策树结构 (../examples/tree/plot_unveil_tree_structure.py)

00:00.076

0.0

SGD:最大间隔分离超平面 (../examples/linear_model/plot_sgd_separating_hyperplane.py)

00:00.069

0.0

SGD:加权样本 (../examples/linear_model/plot_sgd_weighted_samples.py)

00:00.068

0.0

SVM:最大间隔分离超平面 (../examples/svm/plot_separating_hyperplane.py)

00:00.065

0.0

非负最小二乘 (../examples/linear_model/plot_nnls.py)

00:00.064

0.0

SVM 间隔示例 (../examples/svm/plot_svm_margin.py)

00:00.062

0.0

K-Means++ 初始化示例 (../examples/cluster/plot_kmeans_plusplus.py)

00:00.057

0.0

元数据路由 (../examples/miscellaneous/plot_metadata_routing.py)

00:00.044

0.0

显示估计器和复杂管道 (../examples/miscellaneous/plot_estimator_representation.py)

00:00.030

0.0

FrozenEstimator 使用示例 (../examples/frozen/plot_frozen_examples.py)

00:00.023

0.0

scikit-learn 1.0 发布亮点 (../examples/release_highlights/plot_release_highlights_1_0_0.py)

00:00.015

0.0

管道 ANOVA SVM (../examples/feature_selection/plot_feature_selection_pipeline.py)

00:00.014

0.0

维基百科主特征向量 (../examples/applications/wikipedia_principal_eigenvector.py)

00:00.000

0.0

__sklearn_is_fitted__ 作为开发者 API (../examples/developing_estimators/sklearn_is_fitted.py)

00:00.000

0.0

TSNE 中的近似最近邻 (../examples/neighbors/approximate_nearest_neighbors.py)

00:00.000

0.0