多层感知机中变化的正则化#

在合成数据集上比较正则化参数“alpha”的不同值。绘图显示,不同的 alpha 值会产生不同的决策函数。

Alpha 是正则化项(又称惩罚项)的一个参数,通过约束权重的大小来对抗过拟合。增大 alpha 可能会通过鼓励更小的权重来修正高方差(过拟合的迹象),从而使决策边界图的曲率减小。类似地,减小 alpha 可能会通过鼓励更大的权重来修正高偏差(欠拟合的迹象),从而可能产生更复杂的决策边界。

alpha 0.10, alpha 0.32, alpha 1.00, alpha 3.16, alpha 10.00, alpha 0.10, alpha 0.32, alpha 1.00, alpha 3.16, alpha 10.00, alpha 0.10, alpha 0.32, alpha 1.00, alpha 3.16, alpha 10.00
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap

from sklearn.datasets import make_circles, make_classification, make_moons
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

h = 0.02  # step size in the mesh

alphas = np.logspace(-1, 1, 5)

classifiers = []
names = []
for alpha in alphas:
    classifiers.append(
        make_pipeline(
            StandardScaler(),
            MLPClassifier(
                solver="lbfgs",
                alpha=alpha,
                random_state=1,
                max_iter=2000,
                early_stopping=True,
                hidden_layer_sizes=[10, 10],
            ),
        )
    )
    names.append(f"alpha {alpha:.2f}")

X, y = make_classification(
    n_features=2, n_redundant=0, n_informative=2, random_state=0, n_clusters_per_class=1
)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)

datasets = [
    make_moons(noise=0.3, random_state=0),
    make_circles(noise=0.2, factor=0.5, random_state=1),
    linearly_separable,
]

figure = plt.figure(figsize=(17, 9))
i = 1
# iterate over datasets
for X, y in datasets:
    # split into training and test part
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.4, random_state=42
    )

    x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
    y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

    # just plot the dataset first
    cm = plt.cm.RdBu
    cm_bright = ListedColormap(["#FF0000", "#0000FF"])
    ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
    # Plot the training points
    ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
    # and testing points
    ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)
    ax.set_xlim(xx.min(), xx.max())
    ax.set_ylim(yy.min(), yy.max())
    ax.set_xticks(())
    ax.set_yticks(())
    i += 1

    # iterate over classifiers
    for name, clf in zip(names, classifiers):
        ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
        clf.fit(X_train, y_train)
        score = clf.score(X_test, y_test)

        # Plot the decision boundary. For that, we will assign a color to each
        # point in the mesh [x_min, x_max] x [y_min, y_max].
        if hasattr(clf, "decision_function"):
            Z = clf.decision_function(np.column_stack([xx.ravel(), yy.ravel()]))
        else:
            Z = clf.predict_proba(np.column_stack([xx.ravel(), yy.ravel()]))[:, 1]

        # Put the result into a color plot
        Z = Z.reshape(xx.shape)
        ax.contourf(xx, yy, Z, cmap=cm, alpha=0.8)

        # Plot also the training points
        ax.scatter(
            X_train[:, 0],
            X_train[:, 1],
            c=y_train,
            cmap=cm_bright,
            edgecolors="black",
            s=25,
        )
        # and testing points
        ax.scatter(
            X_test[:, 0],
            X_test[:, 1],
            c=y_test,
            cmap=cm_bright,
            alpha=0.6,
            edgecolors="black",
            s=25,
        )

        ax.set_xlim(xx.min(), xx.max())
        ax.set_ylim(yy.min(), yy.max())
        ax.set_xticks(())
        ax.set_yticks(())
        ax.set_title(name)
        ax.text(
            xx.max() - 0.3,
            yy.min() + 0.3,
            f"{score:.3f}".lstrip("0"),
            size=15,
            horizontalalignment="right",
        )
        i += 1

figure.subplots_adjust(left=0.02, right=0.98)
plt.show()

脚本总运行时间: (0 分 1.812 秒)

相关示例

特征离散化

特征离散化

分类器比较

分类器比较

鸢尾花数据集上的高斯过程分类 (GPC)

鸢尾花数据集上的高斯过程分类 (GPC)

鸢尾花数据集上半监督分类器与 SVM 的决策边界

鸢尾花数据集上半监督分类器与 SVM 的决策边界

由 Sphinx-Gallery 生成的画廊