近邻传播聚类算法演示#
参考文献:Brendan J. Frey 和 Delbert Dueck,“通过数据点之间传递消息进行聚类”,《科学》2007 年 2 月
import numpy as np
from sklearn import metrics
from sklearn.cluster import AffinityPropagation
from sklearn.datasets import make_blobs
生成样本数据#
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(
n_samples=300, centers=centers, cluster_std=0.5, random_state=0
)
计算近邻传播#
af = AffinityPropagation(preference=-50, random_state=0).fit(X)
cluster_centers_indices = af.cluster_centers_indices_
labels = af.labels_
n_clusters_ = len(cluster_centers_indices)
print("Estimated number of clusters: %d" % n_clusters_)
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f" % metrics.adjusted_rand_score(labels_true, labels))
print(
"Adjusted Mutual Information: %0.3f"
% metrics.adjusted_mutual_info_score(labels_true, labels)
)
print(
"Silhouette Coefficient: %0.3f"
% metrics.silhouette_score(X, labels, metric="sqeuclidean")
)
Estimated number of clusters: 3
Homogeneity: 0.872
Completeness: 0.872
V-measure: 0.872
Adjusted Rand Index: 0.912
Adjusted Mutual Information: 0.871
Silhouette Coefficient: 0.753
绘制结果#
import matplotlib.pyplot as plt
plt.close("all")
plt.figure(1)
plt.clf()
colors = plt.cycler("color", plt.cm.viridis(np.linspace(0, 1, 4)))
for k, col in zip(range(n_clusters_), colors):
class_members = labels == k
cluster_center = X[cluster_centers_indices[k]]
plt.scatter(
X[class_members, 0], X[class_members, 1], color=col["color"], marker="."
)
plt.scatter(
cluster_center[0], cluster_center[1], s=14, color=col["color"], marker="o"
)
for x in X[class_members]:
plt.plot(
[cluster_center[0], x[0]], [cluster_center[1], x[1]], color=col["color"]
)
plt.title("Estimated number of clusters: %d" % n_clusters_)
plt.show()
脚本总运行时间:(0 分钟 0.372 秒)
相关示例
DBSCAN 聚类算法演示
均值漂移聚类算法演示
K 均值和 MiniBatchKMeans 聚类算法的比较
聚类性能评估中的偶然性调整