高斯混合模型正弦曲线#

本例演示了高斯混合模型在非高斯混合随机变量数据上的拟合行为。数据集由100个松散分布的点组成,这些点大致遵循一条带有噪声的正弦曲线。因此,高斯分量的数量没有真实值。

第一个模型是经典的高斯混合模型,它具有10个分量,并使用期望最大化算法进行拟合。

第二个模型是具有狄利克雷过程先验的贝叶斯高斯混合模型,使用变分推断进行拟合。较低的浓度先验值使得模型倾向于较少数量的活动分量。该模型“决定”将建模能力集中在数据集结构的大图景上:由非对角协方差矩阵建模的具有交替方向的点组。这些交替方向大致捕捉了原始正弦信号的交替特性。

第三个模型也是具有狄利克雷过程先验的贝叶斯高斯混合模型,但这次浓度先验值较高,使模型能够更自由地对数据的细粒度结构进行建模。结果是一个具有更多活动分量的混合模型,类似于第一个模型,在该模型中我们任意决定将分量数量固定为10。

哪个模型更好是一个主观判断的问题:我们是想要偏向只捕捉大图景以总结和解释大部分数据结构而忽略细节的模型,还是更偏向紧密遵循信号高密度区域的模型?

最后两个面板显示了如何从最后两个模型中进行采样。生成的样本分布并不完全像原始数据分布。这种差异主要源于我们使用假设数据由有限数量的高斯分量生成而不是连续噪声正弦曲线的模型所造成的近似误差。

Expectation-maximization, Bayesian Gaussian mixture models with a Dirichlet process prior for $\gamma_0=0.01$., Gaussian mixture with a Dirichlet process prior for $\gamma_0=0.01$ sampled with $2000$ samples., Bayesian Gaussian mixture models with a Dirichlet process prior for $\gamma_0=100$, Gaussian mixture with a Dirichlet process prior for $\gamma_0=100$ sampled with $2000$ samples.
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import itertools

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
from scipy import linalg

from sklearn import mixture

color_iter = itertools.cycle(["navy", "c", "cornflowerblue", "gold", "darkorange"])


def plot_results(X, Y, means, covariances, index, title):
    splot = plt.subplot(5, 1, 1 + index)
    for i, (mean, covar, color) in enumerate(zip(means, covariances, color_iter)):
        v, w = linalg.eigh(covar)
        v = 2.0 * np.sqrt(2.0) * np.sqrt(v)
        u = w[0] / linalg.norm(w[0])
        # as the DP will not use every component it has access to
        # unless it needs it, we shouldn't plot the redundant
        # components.
        if not np.any(Y == i):
            continue
        plt.scatter(X[Y == i, 0], X[Y == i, 1], 0.8, color=color)

        # Plot an ellipse to show the Gaussian component
        angle = np.arctan(u[1] / u[0])
        angle = 180.0 * angle / np.pi  # convert to degrees
        ell = mpl.patches.Ellipse(mean, v[0], v[1], angle=180.0 + angle, color=color)
        ell.set_clip_box(splot.bbox)
        ell.set_alpha(0.5)
        splot.add_artist(ell)

    plt.xlim(-6.0, 4.0 * np.pi - 6.0)
    plt.ylim(-5.0, 5.0)
    plt.title(title)
    plt.xticks(())
    plt.yticks(())


def plot_samples(X, Y, n_components, index, title):
    plt.subplot(5, 1, 4 + index)
    for i, color in zip(range(n_components), color_iter):
        # as the DP will not use every component it has access to
        # unless it needs it, we shouldn't plot the redundant
        # components.
        if not np.any(Y == i):
            continue
        plt.scatter(X[Y == i, 0], X[Y == i, 1], 0.8, color=color)

    plt.xlim(-6.0, 4.0 * np.pi - 6.0)
    plt.ylim(-5.0, 5.0)
    plt.title(title)
    plt.xticks(())
    plt.yticks(())


# Parameters
n_samples = 100

# Generate random sample following a sine curve
np.random.seed(0)
X = np.zeros((n_samples, 2))
step = 4.0 * np.pi / n_samples

for i in range(X.shape[0]):
    x = i * step - 6.0
    X[i, 0] = x + np.random.normal(0, 0.1)
    X[i, 1] = 3.0 * (np.sin(x) + np.random.normal(0, 0.2))

plt.figure(figsize=(10, 10))
plt.subplots_adjust(
    bottom=0.04, top=0.95, hspace=0.2, wspace=0.05, left=0.03, right=0.97
)

# Fit a Gaussian mixture with EM using ten components
gmm = mixture.GaussianMixture(
    n_components=10, covariance_type="full", max_iter=100
).fit(X)
plot_results(
    X, gmm.predict(X), gmm.means_, gmm.covariances_, 0, "Expectation-maximization"
)

dpgmm = mixture.BayesianGaussianMixture(
    n_components=10,
    covariance_type="full",
    weight_concentration_prior=1e-2,
    weight_concentration_prior_type="dirichlet_process",
    mean_precision_prior=1e-2,
    covariance_prior=1e0 * np.eye(2),
    init_params="random",
    max_iter=100,
    random_state=2,
).fit(X)
plot_results(
    X,
    dpgmm.predict(X),
    dpgmm.means_,
    dpgmm.covariances_,
    1,
    "Bayesian Gaussian mixture models with a Dirichlet process prior "
    r"for $\gamma_0=0.01$.",
)

X_s, y_s = dpgmm.sample(n_samples=2000)
plot_samples(
    X_s,
    y_s,
    dpgmm.n_components,
    0,
    "Gaussian mixture with a Dirichlet process prior "
    r"for $\gamma_0=0.01$ sampled with $2000$ samples.",
)

dpgmm = mixture.BayesianGaussianMixture(
    n_components=10,
    covariance_type="full",
    weight_concentration_prior=1e2,
    weight_concentration_prior_type="dirichlet_process",
    mean_precision_prior=1e-2,
    covariance_prior=1e0 * np.eye(2),
    init_params="kmeans",
    max_iter=100,
    random_state=2,
).fit(X)
plot_results(
    X,
    dpgmm.predict(X),
    dpgmm.means_,
    dpgmm.covariances_,
    2,
    "Bayesian Gaussian mixture models with a Dirichlet process prior "
    r"for $\gamma_0=100$",
)

X_s, y_s = dpgmm.sample(n_samples=2000)
plot_samples(
    X_s,
    y_s,
    dpgmm.n_components,
    1,
    "Gaussian mixture with a Dirichlet process prior "
    r"for $\gamma_0=100$ sampled with $2000$ samples.",
)

plt.show()

脚本总运行时间:(0 分钟 0.480 秒)

相关示例

高斯混合模型椭球

高斯混合模型椭球

变分贝叶斯高斯混合的集中先验类型分析

变分贝叶斯高斯混合的集中先验类型分析

高斯混合的密度估计

高斯混合的密度估计

GMM 协方差

GMM 协方差

由Sphinx-Gallery生成的图库