注意
转到末尾 下载完整的示例代码。或者通过 JupyterLite 或 Binder 在您的浏览器中运行此示例
使用稀疏特征对文本文档进行分类#
这是一个示例,展示了如何使用 scikit-learn 通过 词袋方法 按主题对文档进行分类。此示例使用 Tf-idf 加权文档术语稀疏矩阵来编码特征,并演示了可以有效处理稀疏矩阵的各种分类器。
关于使用无监督学习方法进行文档分析,请参见示例脚本使用k-means聚类文本文档。
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
加载和向量化20个新闻组文本数据集#
我们定义一个函数来加载数据,数据来自20个新闻组文本数据集,该数据集包含大约18,000个关于20个主题的新闻组帖子,分为两个子集:一个用于训练(或开发),另一个用于测试(或性能评估)。请注意,默认情况下,文本样本包含一些消息元数据,例如'headers'
、'footers'
(签名)和'quotes'
(引用其他帖子)。因此,fetch_20newsgroups
函数接受一个名为remove
的参数,以尝试去除此类信息,这些信息可能会使分类问题“过于简单”。这是通过使用既不完美也不标准的简单启发式方法实现的,因此默认情况下处于禁用状态。
from time import time
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
categories = [
"alt.atheism",
"talk.religion.misc",
"comp.graphics",
"sci.space",
]
def size_mb(docs):
return sum(len(s.encode("utf-8")) for s in docs) / 1e6
def load_dataset(verbose=False, remove=()):
"""Load and vectorize the 20 newsgroups dataset."""
data_train = fetch_20newsgroups(
subset="train",
categories=categories,
shuffle=True,
random_state=42,
remove=remove,
)
data_test = fetch_20newsgroups(
subset="test",
categories=categories,
shuffle=True,
random_state=42,
remove=remove,
)
# order of labels in `target_names` can be different from `categories`
target_names = data_train.target_names
# split target in a training set and a test set
y_train, y_test = data_train.target, data_test.target
# Extracting features from the training data using a sparse vectorizer
t0 = time()
vectorizer = TfidfVectorizer(
sublinear_tf=True, max_df=0.5, min_df=5, stop_words="english"
)
X_train = vectorizer.fit_transform(data_train.data)
duration_train = time() - t0
# Extracting features from the test data using the same vectorizer
t0 = time()
X_test = vectorizer.transform(data_test.data)
duration_test = time() - t0
feature_names = vectorizer.get_feature_names_out()
if verbose:
# compute size of loaded data
data_train_size_mb = size_mb(data_train.data)
data_test_size_mb = size_mb(data_test.data)
print(
f"{len(data_train.data)} documents - "
f"{data_train_size_mb:.2f}MB (training set)"
)
print(f"{len(data_test.data)} documents - {data_test_size_mb:.2f}MB (test set)")
print(f"{len(target_names)} categories")
print(
f"vectorize training done in {duration_train:.3f}s "
f"at {data_train_size_mb / duration_train:.3f}MB/s"
)
print(f"n_samples: {X_train.shape[0]}, n_features: {X_train.shape[1]}")
print(
f"vectorize testing done in {duration_test:.3f}s "
f"at {data_test_size_mb / duration_test:.3f}MB/s"
)
print(f"n_samples: {X_test.shape[0]}, n_features: {X_test.shape[1]}")
return X_train, X_test, y_train, y_test, feature_names, target_names
词袋文档分类器的分析#
我们现在将训练两次分类器,一次使用包含元数据的文本样本,一次去除元数据后。对于这两种情况,我们都将使用混淆矩阵分析测试集上的分类错误,并检查定义训练模型分类函数的系数。
没有去除元数据的模型#
我们首先使用自定义函数load_dataset
加载没有去除元数据的数据。
X_train, X_test, y_train, y_test, feature_names, target_names = load_dataset(
verbose=True
)
2034 documents - 3.98MB (training set)
1353 documents - 2.87MB (test set)
4 categories
vectorize training done in 0.392s at 10.157MB/s
n_samples: 2034, n_features: 7831
vectorize testing done in 0.240s at 11.926MB/s
n_samples: 1353, n_features: 7831
我们的第一个模型是RidgeClassifier
类的实例。这是一个线性分类模型,它使用在{-1, 1}编码目标上的均方误差,每个可能的类别一个。与LogisticRegression
相反,RidgeClassifier
不提供概率预测(没有predict_proba
方法),但它通常训练速度更快。
from sklearn.linear_model import RidgeClassifier
clf = RidgeClassifier(tol=1e-2, solver="sparse_cg")
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
我们绘制该分类器的混淆矩阵,以查找分类错误中是否存在模式。
import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay
fig, ax = plt.subplots(figsize=(10, 5))
ConfusionMatrixDisplay.from_predictions(y_test, pred, ax=ax)
ax.xaxis.set_ticklabels(target_names)
ax.yaxis.set_ticklabels(target_names)
_ = ax.set_title(
f"Confusion Matrix for {clf.__class__.__name__}\non the original documents"
)
混淆矩阵突出显示,alt.atheism
类别的文档经常与talk.religion.misc
类别的文档混淆,反之亦然,这是预期的,因为这些主题在语义上是相关的。
我们还观察到,sci.space
类别的某些文档可能会被误分类为comp.graphics
,而反过来则要少得多。需要手动检查这些分类错误的文档,才能了解这种不对称性。可能是空间主题的词汇比计算机图形的词汇更具体。
通过查看具有最高平均特征效应的单词,我们可以更深入地了解该分类器如何做出决策。
import numpy as np
import pandas as pd
def plot_feature_effects():
# learned coefficients weighted by frequency of appearance
average_feature_effects = clf.coef_ * np.asarray(X_train.mean(axis=0)).ravel()
for i, label in enumerate(target_names):
top5 = np.argsort(average_feature_effects[i])[-5:][::-1]
if i == 0:
top = pd.DataFrame(feature_names[top5], columns=[label])
top_indices = top5
else:
top[label] = feature_names[top5]
top_indices = np.concatenate((top_indices, top5), axis=None)
top_indices = np.unique(top_indices)
predictive_words = feature_names[top_indices]
# plot feature effects
bar_size = 0.25
padding = 0.75
y_locs = np.arange(len(top_indices)) * (4 * bar_size + padding)
fig, ax = plt.subplots(figsize=(10, 8))
for i, label in enumerate(target_names):
ax.barh(
y_locs + (i - 2) * bar_size,
average_feature_effects[i, top_indices],
height=bar_size,
label=label,
)
ax.set(
yticks=y_locs,
yticklabels=predictive_words,
ylim=[
0 - 4 * bar_size,
len(top_indices) * (4 * bar_size + padding) - 4 * bar_size,
],
)
ax.legend(loc="lower right")
print("top 5 keywords per class:")
print(top)
return ax
_ = plot_feature_effects().set_title("Average feature effect on the original data")
top 5 keywords per class:
alt.atheism comp.graphics sci.space talk.religion.misc
0 keith graphics space christian
1 god university nasa com
2 atheists thanks orbit god
3 people does moon morality
4 caltech image access people
我们可以观察到,最具预测性的单词通常与单个类别强烈正相关,而与所有其他类别负相关。大多数这些正相关性很容易解释。然而,一些词语,如"god"
和"people"
,与"talk.misc.religion"
和"alt.atheism"
都正相关,因为这两个类别预期共享一些共同的词汇。但是请注意,也有一些词语,如"christian"
和"morality"
,只与"talk.misc.religion"
正相关。此外,在这个数据集的版本中,单词"caltech"
是无神论最具预测性的特征之一,这是由于数据集中的污染,来自某种元数据,例如以前电子邮件发送者的电子邮件地址,如下所示。
data_train = fetch_20newsgroups(
subset="train", categories=categories, shuffle=True, random_state=42
)
for doc in data_train.data:
if "caltech" in doc:
print(doc)
break
From: [email protected] (Jon Livesey)
Subject: Re: Morality? (was Re: <Political Atheists?)
Organization: sgi
Lines: 93
Distribution: world
NNTP-Posting-Host: solntze.wpd.sgi.com
In article <[email protected]>, [email protected] (Keith Allan Schneider) writes:
|> [email protected] (Jon Livesey) writes:
|>
|> >>>Explain to me
|> >>>how instinctive acts can be moral acts, and I am happy to listen.
|> >>For example, if it were instinctive not to murder...
|> >
|> >Then not murdering would have no moral significance, since there
|> >would be nothing voluntary about it.
|>
|> See, there you go again, saying that a moral act is only significant
|> if it is "voluntary." Why do you think this?
If you force me to do something, am I morally responsible for it?
|>
|> And anyway, humans have the ability to disregard some of their instincts.
Well, make up your mind. Is it to be "instinctive not to murder"
or not?
|>
|> >>So, only intelligent beings can be moral, even if the bahavior of other
|> >>beings mimics theirs?
|> >
|> >You are starting to get the point. Mimicry is not necessarily the
|> >same as the action being imitated. A Parrot saying "Pretty Polly"
|> >isn't necessarily commenting on the pulchritude of Polly.
|>
|> You are attaching too many things to the term "moral," I think.
|> Let's try this: is it "good" that animals of the same species
|> don't kill each other. Or, do you think this is right?
It's not even correct. Animals of the same species do kill
one another.
|>
|> Or do you think that animals are machines, and that nothing they do
|> is either right nor wrong?
Sigh. I wonder how many times we have been round this loop.
I think that instinctive bahaviour has no moral significance.
I am quite prepared to believe that higher animals, such as
primates, have the beginnings of a moral sense, since they seem
to exhibit self-awareness.
|>
|>
|> >>Animals of the same species could kill each other arbitarily, but
|> >>they don't.
|> >
|> >They do. I and other posters have given you many examples of exactly
|> >this, but you seem to have a very short memory.
|>
|> Those weren't arbitrary killings. They were slayings related to some
|> sort of mating ritual or whatnot.
So what? Are you trying to say that some killing in animals
has a moral significance and some does not? Is this your
natural morality>
|>
|> >>Are you trying to say that this isn't an act of morality because
|> >>most animals aren't intelligent enough to think like we do?
|> >
|> >I'm saying:
|> > "There must be the possibility that the organism - it's not
|> > just people we are talking about - can consider alternatives."
|> >
|> >It's right there in the posting you are replying to.
|>
|> Yes it was, but I still don't understand your distinctions. What
|> do you mean by "consider?" Can a small child be moral? How about
|> a gorilla? A dolphin? A platypus? Where is the line drawn? Does
|> the being need to be self aware?
Are you blind? What do you think that this sentence means?
"There must be the possibility that the organism - it's not
just people we are talking about - can consider alternatives."
What would that imply?
|>
|> What *do* you call the mechanism which seems to prevent animals of
|> the same species from (arbitrarily) killing each other? Don't
|> you find the fact that they don't at all significant?
I find the fact that they do to be significant.
jon.
此类标题、签名页脚(以及来自先前邮件的引用元数据)可以被视为辅助信息,人为地揭示了新闻组,通过识别注册成员,而我们更希望我们的文本分类器只从每个文本文档的“主要内容”中学习,而不是依赖于作者泄露的身份。
去除元数据的模型#
scikit-learn中20个新闻组数据集加载器的remove
选项允许启发式地尝试过滤掉一些使分类问题人为地更容易处理的无用元数据。请注意,这种文本内容的过滤远非完美。
让我们尝试利用此选项来训练一个文本分类器,该分类器不依赖于此类元数据来做出决策。
(
X_train,
X_test,
y_train,
y_test,
feature_names,
target_names,
) = load_dataset(remove=("headers", "footers", "quotes"))
clf = RidgeClassifier(tol=1e-2, solver="sparse_cg")
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
fig, ax = plt.subplots(figsize=(10, 5))
ConfusionMatrixDisplay.from_predictions(y_test, pred, ax=ax)
ax.xaxis.set_ticklabels(target_names)
ax.yaxis.set_ticklabels(target_names)
_ = ax.set_title(
f"Confusion Matrix for {clf.__class__.__name__}\non filtered documents"
)
通过查看混淆矩阵,更明显的是,使用元数据训练的模型的分数过于乐观。在没有访问元数据的情况下,分类问题不太准确,但更能代表预期的文本分类问题。
_ = plot_feature_effects().set_title("Average feature effects on filtered documents")
top 5 keywords per class:
alt.atheism comp.graphics sci.space talk.religion.misc
0 don graphics space god
1 people file like christian
2 say thanks nasa jesus
3 religion image orbit christians
4 post does launch wrong
在下一节中,我们将保留没有元数据的数据集以比较多个分类器。
分类器基准测试#
Scikit-learn提供了许多不同类型的分类算法。在本节中,我们将对相同的文本分类问题训练这些分类器中的一个选择,并测量它们的泛化性能(测试集上的准确性)和计算性能(速度),包括训练时间和测试时间。为此,我们定义了以下基准测试实用程序。
from sklearn import metrics
from sklearn.utils.extmath import density
def benchmark(clf, custom_name=False):
print("_" * 80)
print("Training: ")
print(clf)
t0 = time()
clf.fit(X_train, y_train)
train_time = time() - t0
print(f"train time: {train_time:.3}s")
t0 = time()
pred = clf.predict(X_test)
test_time = time() - t0
print(f"test time: {test_time:.3}s")
score = metrics.accuracy_score(y_test, pred)
print(f"accuracy: {score:.3}")
if hasattr(clf, "coef_"):
print(f"dimensionality: {clf.coef_.shape[1]}")
print(f"density: {density(clf.coef_)}")
print()
print()
if custom_name:
clf_descr = str(custom_name)
else:
clf_descr = clf.__class__.__name__
return clf_descr, score, train_time, test_time
我们现在使用8个不同的分类模型训练和测试数据集,并获得每个模型的性能结果。这项研究的目的是突出显示针对此类多类文本分类问题的不同类型分类器的计算/准确性权衡。
请注意,为了简化起见,本笔记本中未显示用于调整最重要超参数值的网格搜索过程。有关如何进行此类调整的演示,请参见示例脚本文本特征提取和评估的示例管道 # noqa: E501。
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression, SGDClassifier
from sklearn.naive_bayes import ComplementNB
from sklearn.neighbors import KNeighborsClassifier, NearestCentroid
from sklearn.svm import LinearSVC
results = []
for clf, name in (
(LogisticRegression(C=5, max_iter=1000), "Logistic Regression"),
(RidgeClassifier(alpha=1.0, solver="sparse_cg"), "Ridge Classifier"),
(KNeighborsClassifier(n_neighbors=100), "kNN"),
(RandomForestClassifier(), "Random Forest"),
# L2 penalty Linear SVC
(LinearSVC(C=0.1, dual=False, max_iter=1000), "Linear SVC"),
# L2 penalty Linear SGD
(
SGDClassifier(
loss="log_loss", alpha=1e-4, n_iter_no_change=3, early_stopping=True
),
"log-loss SGD",
),
# NearestCentroid (aka Rocchio classifier)
(NearestCentroid(), "NearestCentroid"),
# Sparse naive Bayes classifier
(ComplementNB(alpha=0.1), "Complement naive Bayes"),
):
print("=" * 80)
print(name)
results.append(benchmark(clf, name))
================================================================================
Logistic Regression
________________________________________________________________________________
Training:
LogisticRegression(C=5, max_iter=1000)
train time: 0.177s
test time: 0.000734s
accuracy: 0.772
dimensionality: 5316
density: 1.0
================================================================================
Ridge Classifier
________________________________________________________________________________
Training:
RidgeClassifier(solver='sparse_cg')
train time: 0.0331s
test time: 0.000781s
accuracy: 0.76
dimensionality: 5316
density: 1.0
================================================================================
kNN
________________________________________________________________________________
Training:
KNeighborsClassifier(n_neighbors=100)
train time: 0.00105s
test time: 0.0734s
accuracy: 0.752
================================================================================
Random Forest
________________________________________________________________________________
Training:
RandomForestClassifier()
train time: 1.66s
test time: 0.0569s
accuracy: 0.704
================================================================================
Linear SVC
________________________________________________________________________________
Training:
LinearSVC(C=0.1, dual=False)
train time: 0.0293s
test time: 0.000699s
accuracy: 0.752
dimensionality: 5316
density: 1.0
================================================================================
log-loss SGD
________________________________________________________________________________
Training:
SGDClassifier(early_stopping=True, loss='log_loss', n_iter_no_change=3)
train time: 0.0311s
test time: 0.000672s
accuracy: 0.758
dimensionality: 5316
density: 1.0
================================================================================
NearestCentroid
________________________________________________________________________________
Training:
NearestCentroid()
train time: 0.187s
test time: 0.00177s
accuracy: 0.748
================================================================================
Complement naive Bayes
________________________________________________________________________________
Training:
ComplementNB(alpha=0.1)
train time: 0.00212s
test time: 0.000644s
accuracy: 0.779
绘制每个分类器的准确率、训练时间和测试时间#
散点图显示了每个分类器的测试准确率与训练和测试时间之间的权衡。
indices = np.arange(len(results))
results = [[x[i] for x in results] for i in range(4)]
clf_names, score, training_time, test_time = results
training_time = np.array(training_time)
test_time = np.array(test_time)
fig, ax1 = plt.subplots(figsize=(10, 8))
ax1.scatter(score, training_time, s=60)
ax1.set(
title="Score-training time trade-off",
yscale="log",
xlabel="test accuracy",
ylabel="training time (s)",
)
fig, ax2 = plt.subplots(figsize=(10, 8))
ax2.scatter(score, test_time, s=60)
ax2.set(
title="Score-test time trade-off",
yscale="log",
xlabel="test accuracy",
ylabel="test time (s)",
)
for i, txt in enumerate(clf_names):
ax1.annotate(txt, (score[i], training_time[i]))
ax2.annotate(txt, (score[i], test_time[i]))
朴素贝叶斯模型在分数和训练/测试时间之间取得了最佳平衡,而随机森林训练速度慢、预测成本高且准确率相对较差。这是预期的:对于高维预测问题,线性模型通常更适合,因为当特征空间具有10,000个或更多维度时,大多数问题都变得线性可分。
线性模型的训练速度和准确率差异可以用它们优化的损失函数的选择以及它们使用的正则化类型来解释。请注意,一些具有相同损失函数但不同的求解器或正则化配置的线性模型可能会产生不同的拟合时间和测试准确率。我们可以从第二个图中观察到,一旦训练完成,所有线性模型的预测速度都大致相同,这是预期的,因为它们都实现了相同的预测函数。
KNeighborsClassifier 的准确率相对较低,测试时间最长。较长的预测时间也是预期的:对于每个预测,模型必须计算测试样本与训练集中每个文档之间的成对距离,这是计算量很大的。此外,“维度灾难”损害了该模型在文本分类问题的高维特征空间中产生具有竞争力的准确率的能力。
脚本总运行时间:(0 分钟 6.776 秒)
相关示例
FeatureHasher 和 DictVectorizer 的比较