注意
转到末尾 下载完整的示例代码。或者通过 JupyterLite 或 Binder 在您的浏览器中运行此示例
使用邻域成分分析进行降维#
邻域成分分析在降维中的示例用法。
此示例比较了应用于数字数据集的不同(线性)降维方法。数据集包含 0 到 9 的数字图像,每个类别大约有 180 个样本。每个图像的维度为 8x8 = 64,并缩减为二维数据点。
应用于此数据的主成分分析 (PCA) 识别属性(主成分或特征空间中的方向)的组合,这些属性解释了数据中的最大方差。在这里,我们将不同的样本绘制在 2 个主要成分上。
线性判别分析 (LDA) 试图识别解释类间最大方差的属性。特别是,与 PCA 相反,LDA 是一种使用已知类别标签的监督方法。
邻域成分分析 (NCA) 试图找到一个特征空间,以便随机最近邻算法能够获得最佳精度。与 LDA 一样,它也是一种监督方法。
可以看出,尽管维度大大降低,但 NCA 仍然对数据进行了视觉上有意义的聚类。
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier, NeighborhoodComponentsAnalysis
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
n_neighbors = 3
random_state = 0
# Load Digits dataset
X, y = datasets.load_digits(return_X_y=True)
# Split into train/test
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.5, stratify=y, random_state=random_state
)
dim = len(X[0])
n_classes = len(np.unique(y))
# Reduce dimension to 2 with PCA
pca = make_pipeline(StandardScaler(), PCA(n_components=2, random_state=random_state))
# Reduce dimension to 2 with LinearDiscriminantAnalysis
lda = make_pipeline(StandardScaler(), LinearDiscriminantAnalysis(n_components=2))
# Reduce dimension to 2 with NeighborhoodComponentAnalysis
nca = make_pipeline(
StandardScaler(),
NeighborhoodComponentsAnalysis(n_components=2, random_state=random_state),
)
# Use a nearest neighbor classifier to evaluate the methods
knn = KNeighborsClassifier(n_neighbors=n_neighbors)
# Make a list of the methods to be compared
dim_reduction_methods = [("PCA", pca), ("LDA", lda), ("NCA", nca)]
# plt.figure()
for i, (name, model) in enumerate(dim_reduction_methods):
plt.figure()
# plt.subplot(1, 3, i + 1, aspect=1)
# Fit the method's model
model.fit(X_train, y_train)
# Fit a nearest neighbor classifier on the embedded training set
knn.fit(model.transform(X_train), y_train)
# Compute the nearest neighbor accuracy on the embedded test set
acc_knn = knn.score(model.transform(X_test), y_test)
# Embed the data set in 2 dimensions using the fitted model
X_embedded = model.transform(X)
# Plot the projected points and show the evaluation score
plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c=y, s=30, cmap="Set1")
plt.title(
"{}, KNN (k={})\nTest accuracy = {:.2f}".format(name, n_neighbors, acc_knn)
)
plt.show()
脚本总运行时间:(0 分钟 2.016 秒)
相关示例
鸢尾花数据集的 LDA 和 PCA 2D 投影比较
比较使用和不使用邻域成分分析的最近邻
用于分类的正态、Ledoit-Wolf 和 OAS 线性判别分析
用于分类的正态、Ledoit-Wolf 和 OAS 线性判别分析
邻域成分分析图示