手写数字数据上的K均值聚类演示#

在这个例子中,我们比较了K均值聚类中各种初始化策略的运行时间和结果质量。

由于这里已知真实情况,我们还应用不同的聚类质量指标来判断聚类标签与真实情况的拟合优度。

评估的聚类质量指标(有关指标的定义和讨论,请参见聚类性能评估

缩写

全称

homo

同质性得分

compl

完整性得分

v-meas

V度量

ARI

调整后的Rand指数

AMI

调整后的互信息

silhouette

轮廓系数

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

加载数据集#

我们将首先加载digits数据集。此数据集包含从0到9的手写数字。在聚类的上下文中,人们希望对图像进行分组,以便图像上的手写数字相同。

import numpy as np

from sklearn.datasets import load_digits

data, labels = load_digits(return_X_y=True)
(n_samples, n_features), n_digits = data.shape, np.unique(labels).size

print(f"# digits: {n_digits}; # samples: {n_samples}; # features {n_features}")
# digits: 10; # samples: 1797; # features 64

定义我们的评估基准#

我们将首先定义我们的评估基准。在此基准测试期间,我们打算比较KMeans的不同初始化方法。我们的基准将

  • 创建一个管道,它将使用StandardScaler缩放数据;

  • 训练并计时管道的拟合;

  • 通过不同的指标衡量聚类的性能。

from time import time

from sklearn import metrics
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler


def bench_k_means(kmeans, name, data, labels):
    """Benchmark to evaluate the KMeans initialization methods.

    Parameters
    ----------
    kmeans : KMeans instance
        A :class:`~sklearn.cluster.KMeans` instance with the initialization
        already set.
    name : str
        Name given to the strategy. It will be used to show the results in a
        table.
    data : ndarray of shape (n_samples, n_features)
        The data to cluster.
    labels : ndarray of shape (n_samples,)
        The labels used to compute the clustering metrics which requires some
        supervision.
    """
    t0 = time()
    estimator = make_pipeline(StandardScaler(), kmeans).fit(data)
    fit_time = time() - t0
    results = [name, fit_time, estimator[-1].inertia_]

    # Define the metrics which require only the true labels and estimator
    # labels
    clustering_metrics = [
        metrics.homogeneity_score,
        metrics.completeness_score,
        metrics.v_measure_score,
        metrics.adjusted_rand_score,
        metrics.adjusted_mutual_info_score,
    ]
    results += [m(labels, estimator[-1].labels_) for m in clustering_metrics]

    # The silhouette score requires the full dataset
    results += [
        metrics.silhouette_score(
            data,
            estimator[-1].labels_,
            metric="euclidean",
            sample_size=300,
        )
    ]

    # Show the results
    formatter_result = (
        "{:9s}\t{:.3f}s\t{:.0f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}\t{:.3f}"
    )
    print(formatter_result.format(*results))

运行基准测试#

我们将比较三种方法

  • 使用k-means++进行初始化。此方法是随机的,我们将运行初始化4次;

  • 随机初始化。此方法也是随机的,我们将运行初始化4次;

  • 基于PCA投影的初始化。实际上,我们将使用PCA的组件来初始化KMeans。此方法是确定性的,只需要一次初始化。

from sklearn.cluster import KMeans
from sklearn.decomposition import PCA

print(82 * "_")
print("init\t\ttime\tinertia\thomo\tcompl\tv-meas\tARI\tAMI\tsilhouette")

kmeans = KMeans(init="k-means++", n_clusters=n_digits, n_init=4, random_state=0)
bench_k_means(kmeans=kmeans, name="k-means++", data=data, labels=labels)

kmeans = KMeans(init="random", n_clusters=n_digits, n_init=4, random_state=0)
bench_k_means(kmeans=kmeans, name="random", data=data, labels=labels)

pca = PCA(n_components=n_digits).fit(data)
kmeans = KMeans(init=pca.components_, n_clusters=n_digits, n_init=1)
bench_k_means(kmeans=kmeans, name="PCA-based", data=data, labels=labels)

print(82 * "_")
__________________________________________________________________________________
init            time    inertia homo    compl   v-meas  ARI     AMI     silhouette
k-means++       0.038s  69545   0.598   0.645   0.621   0.469   0.617   0.152
random          0.038s  69735   0.681   0.723   0.701   0.574   0.698   0.170
PCA-based       0.013s  69513   0.600   0.647   0.622   0.468   0.618   0.162
__________________________________________________________________________________

将结果可视化到PCA降维数据上#

PCA允许将数据从原始的64维空间投影到低维空间。随后,我们可以使用PCA投影到二维空间,并在此新空间中绘制数据和聚类。

import matplotlib.pyplot as plt

reduced_data = PCA(n_components=2).fit_transform(data)
kmeans = KMeans(init="k-means++", n_clusters=n_digits, n_init=4)
kmeans.fit(reduced_data)

# Step size of the mesh. Decrease to increase the quality of the VQ.
h = 0.02  # point in the mesh [x_min, x_max]x[y_min, y_max].

# Plot the decision boundary. For that, we will assign a color to each
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

# Obtain labels for each point in mesh. Use last trained model.
Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1)
plt.clf()
plt.imshow(
    Z,
    interpolation="nearest",
    extent=(xx.min(), xx.max(), yy.min(), yy.max()),
    cmap=plt.cm.Paired,
    aspect="auto",
    origin="lower",
)

plt.plot(reduced_data[:, 0], reduced_data[:, 1], "k.", markersize=2)
# Plot the centroids as a white X
centroids = kmeans.cluster_centers_
plt.scatter(
    centroids[:, 0],
    centroids[:, 1],
    marker="x",
    s=169,
    linewidths=3,
    color="w",
    zorder=10,
)
plt.title(
    "K-means clustering on the digits dataset (PCA-reduced data)\n"
    "Centroids are marked with white cross"
)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.xticks(())
plt.yticks(())
plt.show()
K-means clustering on the digits dataset (PCA-reduced data) Centroids are marked with white cross

脚本总运行时间:(0 分钟 0.717 秒)

相关示例

使用k-means聚类文本文档

使用k-means聚类文本文档

比较 K 均值和 MiniBatchKMeans 聚类算法

比较 K 均值和 MiniBatchKMeans 聚类算法

二分 K 均值与正则 K 均值性能比较

二分 K 均值与正则 K 均值性能比较

K 均值初始化影响的经验评估

K 均值初始化影响的经验评估

由Sphinx-Gallery生成的图库