使用交叉验证的网格搜索的自定义重拟合策略#

此示例演示了如何通过交叉验证优化分类器,这是使用GridSearchCV对象在仅包含一半可用标记数据的开发集上完成的。

然后在模型选择步骤中未使用的专用评估集上测量所选超参数和训练模型的性能。

有关模型选择可用工具的更多详细信息,请参阅有关交叉验证:评估估计器性能调整估计器的超参数的部分。

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

数据集#

我们将使用digits数据集。目标是对手写数字图像进行分类。为了便于理解,我们将问题转换为二元分类:目标是识别数字是否为8

from sklearn import datasets

digits = datasets.load_digits()

为了在图像上训练分类器,我们需要将它们展平成向量。每个8x8像素的图像都需要转换为64像素的向量。因此,我们将获得形状为(n_images, n_pixels)的最终数据数组。

n_samples = len(digits.images)
X = digits.images.reshape((n_samples, -1))
y = digits.target == 8
print(
    f"The number of images is {X.shape[0]} and each image contains {X.shape[1]} pixels"
)
The number of images is 1797 and each image contains 64 pixels

如引言中所述,数据将被分成大小相等的训练集和测试集。

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)

定义我们的网格搜索策略#

我们将通过在训练集的folds上搜索最佳超参数来选择分类器。为此,我们需要定义分数来选择最佳候选者。

scores = ["precision", "recall"]

我们还可以定义一个函数传递给GridSearchCV实例的refit参数。它将实现自定义策略,以从GridSearchCVcv_results_属性中选择最佳候选者。一旦选择候选者,GridSearchCV实例会自动对其进行重拟合。

在这里,策略是缩小在精确度和召回率方面最佳的模型列表。从选定的模型中,我们最终选择预测速度最快的模型。请注意,这些自定义选择完全是任意的。

import pandas as pd


def print_dataframe(filtered_cv_results):
    """Pretty print for filtered dataframe"""
    for mean_precision, std_precision, mean_recall, std_recall, params in zip(
        filtered_cv_results["mean_test_precision"],
        filtered_cv_results["std_test_precision"],
        filtered_cv_results["mean_test_recall"],
        filtered_cv_results["std_test_recall"],
        filtered_cv_results["params"],
    ):
        print(
            f"precision: {mean_precision:0.3f}{std_precision:0.03f}),"
            f" recall: {mean_recall:0.3f}{std_recall:0.03f}),"
            f" for {params}"
        )
    print()


def refit_strategy(cv_results):
    """Define the strategy to select the best estimator.

    The strategy defined here is to filter-out all results below a precision threshold
    of 0.98, rank the remaining by recall and keep all models with one standard
    deviation of the best by recall. Once these models are selected, we can select the
    fastest model to predict.

    Parameters
    ----------
    cv_results : dict of numpy (masked) ndarrays
        CV results as returned by the `GridSearchCV`.

    Returns
    -------
    best_index : int
        The index of the best estimator as it appears in `cv_results`.
    """
    # print the info about the grid-search for the different scores
    precision_threshold = 0.98

    cv_results_ = pd.DataFrame(cv_results)
    print("All grid-search results:")
    print_dataframe(cv_results_)

    # Filter-out all results below the threshold
    high_precision_cv_results = cv_results_[
        cv_results_["mean_test_precision"] > precision_threshold
    ]

    print(f"Models with a precision higher than {precision_threshold}:")
    print_dataframe(high_precision_cv_results)

    high_precision_cv_results = high_precision_cv_results[
        [
            "mean_score_time",
            "mean_test_recall",
            "std_test_recall",
            "mean_test_precision",
            "std_test_precision",
            "rank_test_recall",
            "rank_test_precision",
            "params",
        ]
    ]

    # Select the most performant models in terms of recall
    # (within 1 sigma from the best)
    best_recall_std = high_precision_cv_results["mean_test_recall"].std()
    best_recall = high_precision_cv_results["mean_test_recall"].max()
    best_recall_threshold = best_recall - best_recall_std

    high_recall_cv_results = high_precision_cv_results[
        high_precision_cv_results["mean_test_recall"] > best_recall_threshold
    ]
    print(
        "Out of the previously selected high precision models, we keep all the\n"
        "the models within one standard deviation of the highest recall model:"
    )
    print_dataframe(high_recall_cv_results)

    # From the best candidates, select the fastest model to predict
    fastest_top_recall_high_precision_index = high_recall_cv_results[
        "mean_score_time"
    ].idxmin()

    print(
        "\nThe selected final model is the fastest to predict out of the previously\n"
        "selected subset of best models based on precision and recall.\n"
        "Its scoring time is:\n\n"
        f"{high_recall_cv_results.loc[fastest_top_recall_high_precision_index]}"
    )

    return fastest_top_recall_high_precision_index

调整超参数#

一旦我们定义了选择最佳模型的策略,我们就定义超参数的值并创建网格搜索实例

from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC

tuned_parameters = [
    {"kernel": ["rbf"], "gamma": [1e-3, 1e-4], "C": [1, 10, 100, 1000]},
    {"kernel": ["linear"], "C": [1, 10, 100, 1000]},
]

grid_search = GridSearchCV(
    SVC(), tuned_parameters, scoring=scores, refit=refit_strategy
)
grid_search.fit(X_train, y_train)
All grid-search results:
precision: 1.000 (±0.000), recall: 0.854 (±0.063), for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.257 (±0.061), for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.877 (±0.069), for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 0.968 (±0.039), recall: 0.780 (±0.083), for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.877 (±0.069), for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 0.905 (±0.058), recall: 0.889 (±0.074), for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.877 (±0.069), for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 0.904 (±0.058), recall: 0.890 (±0.073), for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
precision: 0.695 (±0.073), recall: 0.743 (±0.065), for {'C': 1, 'kernel': 'linear'}
precision: 0.643 (±0.066), recall: 0.757 (±0.066), for {'C': 10, 'kernel': 'linear'}
precision: 0.611 (±0.028), recall: 0.744 (±0.044), for {'C': 100, 'kernel': 'linear'}
precision: 0.618 (±0.039), recall: 0.744 (±0.044), for {'C': 1000, 'kernel': 'linear'}

Models with a precision higher than 0.98:
precision: 1.000 (±0.000), recall: 0.854 (±0.063), for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.257 (±0.061), for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.877 (±0.069), for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.877 (±0.069), for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.877 (±0.069), for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}

Out of the previously selected high precision models, we keep all the
the models within one standard deviation of the highest recall model:
precision: 1.000 (±0.000), recall: 0.854 (±0.063), for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.877 (±0.069), for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.877 (±0.069), for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.877 (±0.069), for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}


The selected final model is the fastest to predict out of the previously
selected subset of best models based on precision and recall.
Its scoring time is:

mean_score_time                                         0.006393
mean_test_recall                                        0.853676
std_test_recall                                         0.063184
mean_test_precision                                          1.0
std_test_precision                                           0.0
rank_test_recall                                               6
rank_test_precision                                            1
params                 {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
Name: 0, dtype: object
GridSearchCV(estimator=SVC(),
             param_grid=[{'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001],
                          'kernel': ['rbf']},
                         {'C': [1, 10, 100, 1000], 'kernel': ['linear']}],
             refit=<function refit_strategy at 0x74b49ed164c0>,
             scoring=['precision', 'recall'])
在Jupyter环境中,请重新运行此单元格以显示HTML表示或信任笔记本。
在GitHub上,HTML表示无法呈现,请尝试使用nbviewer.org加载此页面。


通过使用我们的自定义策略进行网格搜索选择的参数为

grid_search.best_params_
{'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}

最后,我们使用留出的评估集评估微调的模型:grid_search对象已自动使用我们的自定义重拟合策略在完整的训练集上重新拟合

我们可以使用分类报告来计算留出集上的标准分类指标

from sklearn.metrics import classification_report

y_pred = grid_search.predict(X_test)
print(classification_report(y_test, y_pred))
              precision    recall  f1-score   support

       False       0.98      1.00      0.99       807
        True       1.00      0.85      0.92        92

    accuracy                           0.98       899
   macro avg       0.99      0.92      0.95       899
weighted avg       0.98      0.98      0.98       899

注意

问题太容易了:超参数平台太平坦,对于精度和召回率,输出模型相同,质量相同。

脚本的总运行时间:(0分钟10.408秒)

相关示例

精确率-召回率

精确率-召回率

平衡模型复杂度和交叉验证得分

平衡模型复杂度和交叉验证得分

比较用于超参数估计的随机搜索和网格搜索

比较用于超参数估计的随机搜索和网格搜索

使用交叉验证的递归特征消除

使用交叉验证的递归特征消除

由Sphinx-Gallery生成的图库