使用交叉验证的网格搜索的自定义重拟合策略#

此示例展示了如何通过交叉验证优化分类器,这使用 GridSearchCV 对象在仅包含一半可用标记数据的开发集上完成。

然后在专门的评估集上测量所选超参数和训练模型的性能,该评估集在模型选择步骤中未使用。

有关模型选择可用工具的更多详细信息,请参阅有关 交叉验证:评估估计器性能调整估计器的超参数 的部分。

数据集#

我们将使用 digits 数据集。目标是对手写数字图像进行分类。为了便于理解,我们将问题转换为二元分类:目标是识别一个数字是否为 8

from sklearn import datasets

digits = datasets.load_digits()

为了在图像上训练分类器,我们需要将它们展平成向量。每个 8x8 像素的图像都需要转换为 64 像素的向量。因此,我们将获得一个形状为 (n_images, n_pixels) 的最终数据数组。

n_samples = len(digits.images)
X = digits.images.reshape((n_samples, -1))
y = digits.target == 8
print(
    f"The number of images is {X.shape[0]} and each image contains {X.shape[1]} pixels"
)
The number of images is 1797 and each image contains 64 pixels

如引言中所述,数据将被分成大小相等的训练集和测试集。

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=0)

定义我们的网格搜索策略#

我们将通过在训练集的折叠上搜索最佳超参数来选择分类器。为此,我们需要定义分数以选择最佳候选者。

scores = ["precision", "recall"]

我们还可以定义一个函数传递给 GridSearchCV 实例的 refit 参数。它将实现自定义策略以从 GridSearchCV 实例的 cv_results_ 属性中选择最佳候选者。一旦选择候选者,它将由 GridSearchCV 实例自动重新拟合。

这里,策略是将精度和召回率最佳的模型列入候选名单。从选定的模型中,我们最终选择预测速度最快的模型。请注意,这些自定义选择是完全任意的。

import pandas as pd


def print_dataframe(filtered_cv_results):
    """Pretty print for filtered dataframe"""
    for mean_precision, std_precision, mean_recall, std_recall, params in zip(
        filtered_cv_results["mean_test_precision"],
        filtered_cv_results["std_test_precision"],
        filtered_cv_results["mean_test_recall"],
        filtered_cv_results["std_test_recall"],
        filtered_cv_results["params"],
    ):
        print(
            f"precision: {mean_precision:0.3f}{std_precision:0.03f}),"
            f" recall: {mean_recall:0.3f}{std_recall:0.03f}),"
            f" for {params}"
        )
    print()


def refit_strategy(cv_results):
    """Define the strategy to select the best estimator.

    The strategy defined here is to filter-out all results below a precision threshold
    of 0.98, rank the remaining by recall and keep all models with one standard
    deviation of the best by recall. Once these models are selected, we can select the
    fastest model to predict.

    Parameters
    ----------
    cv_results : dict of numpy (masked) ndarrays
        CV results as returned by the `GridSearchCV`.

    Returns
    -------
    best_index : int
        The index of the best estimator as it appears in `cv_results`.
    """
    # print the info about the grid-search for the different scores
    precision_threshold = 0.98

    cv_results_ = pd.DataFrame(cv_results)
    print("All grid-search results:")
    print_dataframe(cv_results_)

    # Filter-out all results below the threshold
    high_precision_cv_results = cv_results_[
        cv_results_["mean_test_precision"] > precision_threshold
    ]

    print(f"Models with a precision higher than {precision_threshold}:")
    print_dataframe(high_precision_cv_results)

    high_precision_cv_results = high_precision_cv_results[
        [
            "mean_score_time",
            "mean_test_recall",
            "std_test_recall",
            "mean_test_precision",
            "std_test_precision",
            "rank_test_recall",
            "rank_test_precision",
            "params",
        ]
    ]

    # Select the most performant models in terms of recall
    # (within 1 sigma from the best)
    best_recall_std = high_precision_cv_results["mean_test_recall"].std()
    best_recall = high_precision_cv_results["mean_test_recall"].max()
    best_recall_threshold = best_recall - best_recall_std

    high_recall_cv_results = high_precision_cv_results[
        high_precision_cv_results["mean_test_recall"] > best_recall_threshold
    ]
    print(
        "Out of the previously selected high precision models, we keep all the\n"
        "the models within one standard deviation of the highest recall model:"
    )
    print_dataframe(high_recall_cv_results)

    # From the best candidates, select the fastest model to predict
    fastest_top_recall_high_precision_index = high_recall_cv_results[
        "mean_score_time"
    ].idxmin()

    print(
        "\nThe selected final model is the fastest to predict out of the previously\n"
        "selected subset of best models based on precision and recall.\n"
        "Its scoring time is:\n\n"
        f"{high_recall_cv_results.loc[fastest_top_recall_high_precision_index]}"
    )

    return fastest_top_recall_high_precision_index

调整超参数#

一旦我们定义了选择最佳模型的策略,我们就定义超参数的值并创建网格搜索实例。

from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC

tuned_parameters = [
    {"kernel": ["rbf"], "gamma": [1e-3, 1e-4], "C": [1, 10, 100, 1000]},
    {"kernel": ["linear"], "C": [1, 10, 100, 1000]},
]

grid_search = GridSearchCV(
    SVC(), tuned_parameters, scoring=scores, refit=refit_strategy
)
grid_search.fit(X_train, y_train)
All grid-search results:
precision: 1.000 (±0.000), recall: 0.854 (±0.063), for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.257 (±0.061), for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.877 (±0.069), for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 0.968 (±0.039), recall: 0.780 (±0.083), for {'C': 10, 'gamma': 0.0001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.877 (±0.069), for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 0.905 (±0.058), recall: 0.889 (±0.074), for {'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.877 (±0.069), for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 0.904 (±0.058), recall: 0.890 (±0.073), for {'C': 1000, 'gamma': 0.0001, 'kernel': 'rbf'}
precision: 0.695 (±0.073), recall: 0.743 (±0.065), for {'C': 1, 'kernel': 'linear'}
precision: 0.643 (±0.066), recall: 0.757 (±0.066), for {'C': 10, 'kernel': 'linear'}
precision: 0.611 (±0.028), recall: 0.744 (±0.044), for {'C': 100, 'kernel': 'linear'}
precision: 0.618 (±0.039), recall: 0.744 (±0.044), for {'C': 1000, 'kernel': 'linear'}

Models with a precision higher than 0.98:
precision: 1.000 (±0.000), recall: 0.854 (±0.063), for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.257 (±0.061), for {'C': 1, 'gamma': 0.0001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.877 (±0.069), for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.877 (±0.069), for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.877 (±0.069), for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}

Out of the previously selected high precision models, we keep all the
the models within one standard deviation of the highest recall model:
precision: 1.000 (±0.000), recall: 0.854 (±0.063), for {'C': 1, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.877 (±0.069), for {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.877 (±0.069), for {'C': 100, 'gamma': 0.001, 'kernel': 'rbf'}
precision: 1.000 (±0.000), recall: 0.877 (±0.069), for {'C': 1000, 'gamma': 0.001, 'kernel': 'rbf'}


The selected final model is the fastest to predict out of the previously
selected subset of best models based on precision and recall.
Its scoring time is:

mean_score_time                                          0.005425
mean_test_recall                                         0.877206
std_test_recall                                          0.069196
mean_test_precision                                           1.0
std_test_precision                                            0.0
rank_test_recall                                                3
rank_test_precision                                             1
params                 {'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}
Name: 2, dtype: object
GridSearchCV(estimator=SVC(),
             param_grid=[{'C': [1, 10, 100, 1000], 'gamma': [0.001, 0.0001],
                          'kernel': ['rbf']},
                         {'C': [1, 10, 100, 1000], 'kernel': ['linear']}],
             refit=<function refit_strategy at 0x7f4dfb5d1040>,
             scoring=['precision', 'recall'])
在 Jupyter 环境中,请重新运行此单元格以显示 HTML 表示或信任笔记本。
在 GitHub 上,HTML 表示无法呈现,请尝试使用 nbviewer.org 加载此页面。


网格搜索使用我们的自定义策略选择的参数是

grid_search.best_params_
{'C': 10, 'gamma': 0.001, 'kernel': 'rbf'}

最后,我们在留出的评估集上评估微调后的模型:grid_search 对象已自动重新拟合到完整的训练集,使用我们自定义重新拟合策略选择的参数。

我们可以使用分类报告在留出的集合上计算标准分类指标。

from sklearn.metrics import classification_report

y_pred = grid_search.predict(X_test)
print(classification_report(y_test, y_pred))
              precision    recall  f1-score   support

       False       0.99      1.00      0.99       807
        True       1.00      0.87      0.93        92

    accuracy                           0.99       899
   macro avg       0.99      0.93      0.96       899
weighted avg       0.99      0.99      0.99       899

注意

问题太容易了:超参数高原过于平坦,输出模型在精度和召回率方面相同,质量相同。

脚本的总运行时间:(0 分钟 11.050 秒)

相关示例

精确率-召回率

精确率-召回率

平衡模型复杂度和交叉验证得分

平衡模型复杂度和交叉验证得分

比较随机搜索和网格搜索以进行超参数估计

比较随机搜索和网格搜索以进行超参数估计

使用交叉验证的递归特征消除

使用交叉验证的递归特征消除

Sphinx-Gallery 生成的图库