具有和不具有结构的凝聚聚类#

此示例展示了施加连接图以捕捉数据中局部结构的效果。该图只是 20 个最近邻的图。

施加连接性有两个优点。首先,使用稀疏连接矩阵的聚类通常更快。

其次,当使用连接矩阵时,单链接、平均链接和完全链接是不稳定的,并且倾向于创建一些快速增长的集群。实际上,平均链接和完全链接通过在合并时考虑两个集群之间的所有距离来对抗这种渗透行为(而单链接通过仅考虑集群之间的最短距离来夸大这种行为)。连接图打破了平均链接和完全链接的这种机制,使它们类似于更脆弱的单链接。这种效果对于非常稀疏的图(尝试减少 kneighbors_graph 中的邻居数量)和完全链接更为明显。特别是,在图中只有非常少的邻居,会强加一种接近单链接几何形状的几何形状,而单链接众所周知具有这种渗透不稳定性。

  • n_cluster=30, connectivity=False, linkage=average (time 0.04s), linkage=complete (time 0.03s), linkage=ward (time 0.04s), linkage=single (time 0.01s)
  • n_cluster=3, connectivity=False, linkage=average (time 0.04s), linkage=complete (time 0.03s), linkage=ward (time 0.04s), linkage=single (time 0.01s)
  • n_cluster=30, connectivity=True, linkage=average (time 0.11s), linkage=complete (time 0.11s), linkage=ward (time 0.17s), linkage=single (time 0.03s)
  • n_cluster=3, connectivity=True, linkage=average (time 0.12s), linkage=complete (time 0.12s), linkage=ward (time 0.17s), linkage=single (time 0.03s)
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import time

import matplotlib.pyplot as plt
import numpy as np

from sklearn.cluster import AgglomerativeClustering
from sklearn.neighbors import kneighbors_graph

# Generate sample data
n_samples = 1500
np.random.seed(0)
t = 1.5 * np.pi * (1 + 3 * np.random.rand(1, n_samples))
x = t * np.cos(t)
y = t * np.sin(t)


X = np.concatenate((x, y))
X += 0.7 * np.random.randn(2, n_samples)
X = X.T

# Create a graph capturing local connectivity. Larger number of neighbors
# will give more homogeneous clusters to the cost of computation
# time. A very large number of neighbors gives more evenly distributed
# cluster sizes, but may not impose the local manifold structure of
# the data
knn_graph = kneighbors_graph(X, 30, include_self=False)

for connectivity in (None, knn_graph):
    for n_clusters in (30, 3):
        plt.figure(figsize=(10, 4))
        for index, linkage in enumerate(("average", "complete", "ward", "single")):
            plt.subplot(1, 4, index + 1)
            model = AgglomerativeClustering(
                linkage=linkage, connectivity=connectivity, n_clusters=n_clusters
            )
            t0 = time.time()
            model.fit(X)
            elapsed_time = time.time() - t0
            plt.scatter(X[:, 0], X[:, 1], c=model.labels_, cmap=plt.cm.nipy_spectral)
            plt.title(
                "linkage=%s\n(time %.2fs)" % (linkage, elapsed_time),
                fontdict=dict(verticalalignment="top"),
            )
            plt.axis("equal")
            plt.axis("off")

            plt.subplots_adjust(bottom=0, top=0.83, wspace=0, left=0, right=1)
            plt.suptitle(
                "n_cluster=%i, connectivity=%r"
                % (n_clusters, connectivity is not None),
                size=17,
            )


plt.show()

脚本总运行时间:(0 分钟 2.016 秒)

相关示例

比较玩具数据集上的不同层次链接方法

比较玩具数据集上的不同层次链接方法

数字的二维嵌入上的各种凝聚聚类

数字的二维嵌入上的各种凝聚聚类

层次聚类:结构化与非结构化 Ward

层次聚类:结构化与非结构化 Ward

硬币图像上结构化 Ward 层次聚类的演示

硬币图像上结构化 Ward 层次聚类的演示

由 Sphinx-Gallery 生成的图库