文本文档的OutOfCore分类#

这是一个示例,展示了如何使用scikit-learn通过OutOfCore方法进行分类:从不适合主内存的数据中学习。我们使用在线分类器,即支持partial_fit方法的分类器,它将被馈送批量的示例。为了保证特征空间随着时间的推移保持不变,我们利用HashingVectorizer将每个示例投影到相同的特征空间中。这在文本分类中尤其有用,因为新的特征(单词)可能会出现在每个批次中。

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import itertools
import re
import sys
import tarfile
import time
from hashlib import sha256
from html.parser import HTMLParser
from pathlib import Path
from urllib.request import urlretrieve

import matplotlib.pyplot as plt
import numpy as np
from matplotlib import rcParams

from sklearn.datasets import get_data_home
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.linear_model import PassiveAggressiveClassifier, Perceptron, SGDClassifier
from sklearn.naive_bayes import MultinomialNB


def _not_in_sphinx():
    # Hack to detect whether we are running by the sphinx builder
    return "__file__" in globals()

主要部分#

创建向量化器并将特征数量限制在一个合理的最大值

vectorizer = HashingVectorizer(
    decode_error="ignore", n_features=2**18, alternate_sign=False
)


# Iterator over parsed Reuters SGML files.
data_stream = stream_reuters_documents()

# We learn a binary classification between the "acq" class and all the others.
# "acq" was chosen as it is more or less evenly distributed in the Reuters
# files. For other datasets, one should take care of creating a test set with
# a realistic portion of positive instances.
all_classes = np.array([0, 1])
positive_class = "acq"

# Here are some classifiers that support the `partial_fit` method
partial_fit_classifiers = {
    "SGD": SGDClassifier(max_iter=5),
    "Perceptron": Perceptron(),
    "NB Multinomial": MultinomialNB(alpha=0.01),
    "Passive-Aggressive": PassiveAggressiveClassifier(),
}


def get_minibatch(doc_iter, size, pos_class=positive_class):
    """Extract a minibatch of examples, return a tuple X_text, y.

    Note: size is before excluding invalid docs with no topics assigned.

    """
    data = [
        ("{title}\n\n{body}".format(**doc), pos_class in doc["topics"])
        for doc in itertools.islice(doc_iter, size)
        if doc["topics"]
    ]
    if not len(data):
        return np.asarray([], dtype=int), np.asarray([], dtype=int)
    X_text, y = zip(*data)
    return X_text, np.asarray(y, dtype=int)


def iter_minibatches(doc_iter, minibatch_size):
    """Generator of minibatches."""
    X_text, y = get_minibatch(doc_iter, minibatch_size)
    while len(X_text):
        yield X_text, y
        X_text, y = get_minibatch(doc_iter, minibatch_size)


# test data statistics
test_stats = {"n_test": 0, "n_test_pos": 0}

# First we hold out a number of examples to estimate accuracy
n_test_documents = 1000
tick = time.time()
X_test_text, y_test = get_minibatch(data_stream, 1000)
parsing_time = time.time() - tick
tick = time.time()
X_test = vectorizer.transform(X_test_text)
vectorizing_time = time.time() - tick
test_stats["n_test"] += len(y_test)
test_stats["n_test_pos"] += sum(y_test)
print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test)))


def progress(cls_name, stats):
    """Report progress information, return a string."""
    duration = time.time() - stats["t0"]
    s = "%20s classifier : \t" % cls_name
    s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats
    s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats
    s += "accuracy: %(accuracy).3f " % stats
    s += "in %.2fs (%5d docs/s)" % (duration, stats["n_train"] / duration)
    return s


cls_stats = {}

for cls_name in partial_fit_classifiers:
    stats = {
        "n_train": 0,
        "n_train_pos": 0,
        "accuracy": 0.0,
        "accuracy_history": [(0, 0)],
        "t0": time.time(),
        "runtime_history": [(0, 0)],
        "total_fit_time": 0.0,
    }
    cls_stats[cls_name] = stats

get_minibatch(data_stream, n_test_documents)
# Discard test set

# We will feed the classifier with mini-batches of 1000 documents; this means
# we have at most 1000 docs in memory at any time.  The smaller the document
# batch, the bigger the relative overhead of the partial fit methods.
minibatch_size = 1000

# Create the data_stream that parses Reuters SGML files and iterates on
# documents as a stream.
minibatch_iterators = iter_minibatches(data_stream, minibatch_size)
total_vect_time = 0.0

# Main loop : iterate on mini-batches of examples
for i, (X_train_text, y_train) in enumerate(minibatch_iterators):
    tick = time.time()
    X_train = vectorizer.transform(X_train_text)
    total_vect_time += time.time() - tick

    for cls_name, cls in partial_fit_classifiers.items():
        tick = time.time()
        # update estimator with examples in the current mini-batch
        cls.partial_fit(X_train, y_train, classes=all_classes)

        # accumulate test accuracy stats
        cls_stats[cls_name]["total_fit_time"] += time.time() - tick
        cls_stats[cls_name]["n_train"] += X_train.shape[0]
        cls_stats[cls_name]["n_train_pos"] += sum(y_train)
        tick = time.time()
        cls_stats[cls_name]["accuracy"] = cls.score(X_test, y_test)
        cls_stats[cls_name]["prediction_time"] = time.time() - tick
        acc_history = (cls_stats[cls_name]["accuracy"], cls_stats[cls_name]["n_train"])
        cls_stats[cls_name]["accuracy_history"].append(acc_history)
        run_history = (
            cls_stats[cls_name]["accuracy"],
            total_vect_time + cls_stats[cls_name]["total_fit_time"],
        )
        cls_stats[cls_name]["runtime_history"].append(run_history)

        if i % 3 == 0:
            print(progress(cls_name, cls_stats[cls_name]))
    if i % 3 == 0:
        print("\n")
Test set is 878 documents (108 positive)
                 SGD classifier :          962 train docs (   132 positive)    878 test docs (   108 positive) accuracy: 0.915 in 0.67s ( 1446 docs/s)
          Perceptron classifier :          962 train docs (   132 positive)    878 test docs (   108 positive) accuracy: 0.855 in 0.67s ( 1439 docs/s)
      NB Multinomial classifier :          962 train docs (   132 positive)    878 test docs (   108 positive) accuracy: 0.877 in 0.68s ( 1421 docs/s)
  Passive-Aggressive classifier :          962 train docs (   132 positive)    878 test docs (   108 positive) accuracy: 0.933 in 0.68s ( 1415 docs/s)


                 SGD classifier :         3911 train docs (   517 positive)    878 test docs (   108 positive) accuracy: 0.938 in 1.90s ( 2056 docs/s)
          Perceptron classifier :         3911 train docs (   517 positive)    878 test docs (   108 positive) accuracy: 0.936 in 1.91s ( 2051 docs/s)
      NB Multinomial classifier :         3911 train docs (   517 positive)    878 test docs (   108 positive) accuracy: 0.885 in 1.92s ( 2041 docs/s)
  Passive-Aggressive classifier :         3911 train docs (   517 positive)    878 test docs (   108 positive) accuracy: 0.941 in 1.92s ( 2038 docs/s)


                 SGD classifier :         6821 train docs (   891 positive)    878 test docs (   108 positive) accuracy: 0.952 in 3.19s ( 2136 docs/s)
          Perceptron classifier :         6821 train docs (   891 positive)    878 test docs (   108 positive) accuracy: 0.952 in 3.20s ( 2134 docs/s)
      NB Multinomial classifier :         6821 train docs (   891 positive)    878 test docs (   108 positive) accuracy: 0.900 in 3.21s ( 2125 docs/s)
  Passive-Aggressive classifier :         6821 train docs (   891 positive)    878 test docs (   108 positive) accuracy: 0.953 in 3.21s ( 2123 docs/s)


                 SGD classifier :         9759 train docs (  1276 positive)    878 test docs (   108 positive) accuracy: 0.949 in 4.44s ( 2197 docs/s)
          Perceptron classifier :         9759 train docs (  1276 positive)    878 test docs (   108 positive) accuracy: 0.953 in 4.44s ( 2195 docs/s)
      NB Multinomial classifier :         9759 train docs (  1276 positive)    878 test docs (   108 positive) accuracy: 0.909 in 4.45s ( 2191 docs/s)
  Passive-Aggressive classifier :         9759 train docs (  1276 positive)    878 test docs (   108 positive) accuracy: 0.958 in 4.46s ( 2190 docs/s)


                 SGD classifier :        11680 train docs (  1499 positive)    878 test docs (   108 positive) accuracy: 0.944 in 5.52s ( 2114 docs/s)
          Perceptron classifier :        11680 train docs (  1499 positive)    878 test docs (   108 positive) accuracy: 0.956 in 5.53s ( 2113 docs/s)
      NB Multinomial classifier :        11680 train docs (  1499 positive)    878 test docs (   108 positive) accuracy: 0.915 in 5.53s ( 2110 docs/s)
  Passive-Aggressive classifier :        11680 train docs (  1499 positive)    878 test docs (   108 positive) accuracy: 0.950 in 5.54s ( 2109 docs/s)


                 SGD classifier :        14625 train docs (  1865 positive)    878 test docs (   108 positive) accuracy: 0.965 in 6.88s ( 2124 docs/s)
          Perceptron classifier :        14625 train docs (  1865 positive)    878 test docs (   108 positive) accuracy: 0.903 in 6.89s ( 2123 docs/s)
      NB Multinomial classifier :        14625 train docs (  1865 positive)    878 test docs (   108 positive) accuracy: 0.924 in 6.90s ( 2120 docs/s)
  Passive-Aggressive classifier :        14625 train docs (  1865 positive)    878 test docs (   108 positive) accuracy: 0.957 in 6.90s ( 2119 docs/s)


                 SGD classifier :        17360 train docs (  2179 positive)    878 test docs (   108 positive) accuracy: 0.957 in 8.00s ( 2168 docs/s)
          Perceptron classifier :        17360 train docs (  2179 positive)    878 test docs (   108 positive) accuracy: 0.933 in 8.01s ( 2168 docs/s)
      NB Multinomial classifier :        17360 train docs (  2179 positive)    878 test docs (   108 positive) accuracy: 0.932 in 8.01s ( 2165 docs/s)
  Passive-Aggressive classifier :        17360 train docs (  2179 positive)    878 test docs (   108 positive) accuracy: 0.952 in 8.02s ( 2165 docs/s)

结果图#

该图表示分类器的学习曲线:在小批量过程中分类精度的演变。精度是在作为验证集保留的前1000个样本上测量的。

为了限制内存消耗,我们在将示例馈送到学习器之前,将其排队到固定数量。

def plot_accuracy(x, y, x_legend):
    """Plot accuracy as a function of x."""
    x = np.array(x)
    y = np.array(y)
    plt.title("Classification accuracy as a function of %s" % x_legend)
    plt.xlabel("%s" % x_legend)
    plt.ylabel("Accuracy")
    plt.grid(True)
    plt.plot(x, y)


rcParams["legend.fontsize"] = 10
cls_names = list(sorted(cls_stats.keys()))

# Plot accuracy evolution
plt.figure()
for _, stats in sorted(cls_stats.items()):
    # Plot accuracy evolution with #examples
    accuracy, n_examples = zip(*stats["accuracy_history"])
    plot_accuracy(n_examples, accuracy, "training examples (#)")
    ax = plt.gca()
    ax.set_ylim((0.8, 1))
plt.legend(cls_names, loc="best")

plt.figure()
for _, stats in sorted(cls_stats.items()):
    # Plot accuracy evolution with runtime
    accuracy, runtime = zip(*stats["runtime_history"])
    plot_accuracy(runtime, accuracy, "runtime (s)")
    ax = plt.gca()
    ax.set_ylim((0.8, 1))
plt.legend(cls_names, loc="best")

# Plot fitting times
plt.figure()
fig = plt.gcf()
cls_runtime = [stats["total_fit_time"] for cls_name, stats in sorted(cls_stats.items())]

cls_runtime.append(total_vect_time)
cls_names.append("Vectorization")
bar_colors = ["b", "g", "r", "c", "m", "y"]

ax = plt.subplot(111)
rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors)

ax.set_xticks(np.linspace(0, len(cls_names) - 1, len(cls_names)))
ax.set_xticklabels(cls_names, fontsize=10)
ymax = max(cls_runtime) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel("runtime (s)")
ax.set_title("Training Times")


def autolabel(rectangles):
    """attach some text vi autolabel on rectangles."""
    for rect in rectangles:
        height = rect.get_height()
        ax.text(
            rect.get_x() + rect.get_width() / 2.0,
            1.05 * height,
            "%.4f" % height,
            ha="center",
            va="bottom",
        )
        plt.setp(plt.xticks()[1], rotation=30)


autolabel(rectangles)
plt.tight_layout()
plt.show()

# Plot prediction times
plt.figure()
cls_runtime = []
cls_names = list(sorted(cls_stats.keys()))
for cls_name, stats in sorted(cls_stats.items()):
    cls_runtime.append(stats["prediction_time"])
cls_runtime.append(parsing_time)
cls_names.append("Read/Parse\n+Feat.Extr.")
cls_runtime.append(vectorizing_time)
cls_names.append("Hashing\n+Vect.")

ax = plt.subplot(111)
rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors)

ax.set_xticks(np.linspace(0, len(cls_names) - 1, len(cls_names)))
ax.set_xticklabels(cls_names, fontsize=8)
plt.setp(plt.xticks()[1], rotation=30)
ymax = max(cls_runtime) * 1.2
ax.set_ylim((0, ymax))
ax.set_ylabel("runtime (s)")
ax.set_title("Prediction Times (%d instances)" % n_test_documents)
autolabel(rectangles)
plt.tight_layout()
plt.show()
  • Classification accuracy as a function of training examples (#)
  • Classification accuracy as a function of runtime (s)
  • Training Times
  • Prediction Times (1000 instances)

脚本总运行时间:(0分钟9.039秒)

相关示例

使用稀疏特征对文本文档进行分类

使用稀疏特征对文本文档进行分类

预测延迟

预测延迟

具有异构数据源的列转换器

具有异构数据源的列转换器

FeatureHasher和DictVectorizer的比较

FeatureHasher和DictVectorizer的比较

由Sphinx-Gallery生成的图库