自训练中不同阈值的影响#

此示例说明了不同阈值对自训练的影响。breast_cancer数据集被加载,并且标签被删除,使得只有569个样本中的50个具有标签。SelfTrainingClassifier在这个数据集上拟合,具有不同的阈值。

上图显示了分类器在拟合结束时可用的标记样本数量和分类器的准确性。下图显示了标记样本的最后一次迭代。所有值都使用3折交叉验证。

在低阈值(在[0.4, 0.5]范围内),分类器从具有低置信度的标记样本中学习。这些低置信度的样本可能具有错误的预测标签,因此,基于这些错误标签进行拟合会导致较低的准确性。请注意,分类器几乎标记了所有样本,并且只进行了一次迭代。

对于非常高的阈值(在[0.9, 1)范围内),我们观察到分类器不会增加其数据集(自标记样本的数量为0)。因此,使用0.9999阈值达到的准确性与普通的监督分类器达到的准确性相同。

最佳准确性位于这两个极端之间,阈值约为0.7。

plot self training varying threshold
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import matplotlib.pyplot as plt
import numpy as np

from sklearn import datasets
from sklearn.metrics import accuracy_score
from sklearn.model_selection import StratifiedKFold
from sklearn.semi_supervised import SelfTrainingClassifier
from sklearn.svm import SVC
from sklearn.utils import shuffle

n_splits = 3

X, y = datasets.load_breast_cancer(return_X_y=True)
X, y = shuffle(X, y, random_state=42)
y_true = y.copy()
y[50:] = -1
total_samples = y.shape[0]

base_classifier = SVC(probability=True, gamma=0.001, random_state=42)

x_values = np.arange(0.4, 1.05, 0.05)
x_values = np.append(x_values, 0.99999)
scores = np.empty((x_values.shape[0], n_splits))
amount_labeled = np.empty((x_values.shape[0], n_splits))
amount_iterations = np.empty((x_values.shape[0], n_splits))

for i, threshold in enumerate(x_values):
    self_training_clf = SelfTrainingClassifier(base_classifier, threshold=threshold)

    # We need manual cross validation so that we don't treat -1 as a separate
    # class when computing accuracy
    skfolds = StratifiedKFold(n_splits=n_splits)
    for fold, (train_index, test_index) in enumerate(skfolds.split(X, y)):
        X_train = X[train_index]
        y_train = y[train_index]
        X_test = X[test_index]
        y_test = y[test_index]
        y_test_true = y_true[test_index]

        self_training_clf.fit(X_train, y_train)

        # The amount of labeled samples that at the end of fitting
        amount_labeled[i, fold] = (
            total_samples
            - np.unique(self_training_clf.labeled_iter_, return_counts=True)[1][0]
        )
        # The last iteration the classifier labeled a sample in
        amount_iterations[i, fold] = np.max(self_training_clf.labeled_iter_)

        y_pred = self_training_clf.predict(X_test)
        scores[i, fold] = accuracy_score(y_test_true, y_pred)


ax1 = plt.subplot(211)
ax1.errorbar(
    x_values, scores.mean(axis=1), yerr=scores.std(axis=1), capsize=2, color="b"
)
ax1.set_ylabel("Accuracy", color="b")
ax1.tick_params("y", colors="b")

ax2 = ax1.twinx()
ax2.errorbar(
    x_values,
    amount_labeled.mean(axis=1),
    yerr=amount_labeled.std(axis=1),
    capsize=2,
    color="g",
)
ax2.set_ylim(bottom=0)
ax2.set_ylabel("Amount of labeled samples", color="g")
ax2.tick_params("y", colors="g")

ax3 = plt.subplot(212, sharex=ax1)
ax3.errorbar(
    x_values,
    amount_iterations.mean(axis=1),
    yerr=amount_iterations.std(axis=1),
    capsize=2,
    color="b",
)
ax3.set_ylim(bottom=0)
ax3.set_ylabel("Amount of iterations")
ax3.set_xlabel("Threshold")

plt.show()

脚本总运行时间:(0分钟6.289秒)

相关示例

事后调整决策函数的截止点

事后调整决策函数的截止点

具有多重共线性或相关特征的排列重要性

具有多重共线性或相关特征的排列重要性

scikit-learn 1.5 发行亮点

scikit-learn 1.5 发行亮点

绘制随机生成的多分标签数据集

绘制随机生成的多分标签数据集

由Sphinx-Gallery生成的图库