注意
转到结尾下载完整的示例代码。或通过JupyterLite或Binder在您的浏览器中运行此示例。
目标编码器与其他编码器的比较#
TargetEncoder
使用目标值来编码每个分类特征。在此示例中,我们将比较三种不同的处理分类特征的方法:TargetEncoder
、OrdinalEncoder
、OneHotEncoder
以及丢弃类别。
注意
fit(X, y).transform(X)
不等于 fit_transform(X, y)
,因为在fit_transform
中使用了交叉拟合方案进行编码。详情请参阅用户指南。
# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
从OpenML加载数据#
首先,我们加载葡萄酒评论数据集,其中目标是评论者给出的分数。
from sklearn.datasets import fetch_openml
wine_reviews = fetch_openml(data_id=42074, as_frame=True)
df = wine_reviews.frame
df.head()
在此示例中,我们使用数据中数值和分类特征的以下子集。目标是80到100之间的连续值。
numerical_features = ["price"]
categorical_features = [
"country",
"province",
"region_1",
"region_2",
"variety",
"winery",
]
target_name = "points"
X = df[numerical_features + categorical_features]
y = df[target_name]
_ = y.hist()
使用不同的编码器训练和评估管道#
在本节中,我们将评估使用HistGradientBoostingRegressor
和不同编码策略的管道。首先,我们列出将用于预处理分类特征的编码器。
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder, TargetEncoder
categorical_preprocessors = [
("drop", "drop"),
("ordinal", OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1)),
(
"one_hot",
OneHotEncoder(handle_unknown="ignore", max_categories=20, sparse_output=False),
),
("target", TargetEncoder(target_type="continuous")),
]
接下来,我们使用交叉验证评估模型并记录结果。
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.model_selection import cross_validate
from sklearn.pipeline import make_pipeline
n_cv_folds = 3
max_iter = 20
results = []
def evaluate_model_and_store(name, pipe):
result = cross_validate(
pipe,
X,
y,
scoring="neg_root_mean_squared_error",
cv=n_cv_folds,
return_train_score=True,
)
rmse_test_score = -result["test_score"]
rmse_train_score = -result["train_score"]
results.append(
{
"preprocessor": name,
"rmse_test_mean": rmse_test_score.mean(),
"rmse_test_std": rmse_train_score.std(),
"rmse_train_mean": rmse_train_score.mean(),
"rmse_train_std": rmse_train_score.std(),
}
)
for name, categorical_preprocessor in categorical_preprocessors:
preprocessor = ColumnTransformer(
[
("numerical", "passthrough", numerical_features),
("categorical", categorical_preprocessor, categorical_features),
]
)
pipe = make_pipeline(
preprocessor, HistGradientBoostingRegressor(random_state=0, max_iter=max_iter)
)
evaluate_model_and_store(name, pipe)
原生分类特征支持#
在本节中,我们将构建和评估一个管道,该管道在HistGradientBoostingRegressor
中使用原生分类特征支持,该支持最多支持255个唯一类别。在我们的数据集中,大多数分类特征的唯一类别超过255个。
n_unique_categories = df[categorical_features].nunique().sort_values(ascending=False)
n_unique_categories
winery 14810
region_1 1236
variety 632
province 455
country 48
region_2 18
dtype: int64
为了解决上述限制,我们将分类特征分组为低基数和高基数特征。高基数特征将使用目标编码,低基数特征将使用梯度提升中的原生分类特征。
high_cardinality_features = n_unique_categories[n_unique_categories > 255].index
low_cardinality_features = n_unique_categories[n_unique_categories <= 255].index
mixed_encoded_preprocessor = ColumnTransformer(
[
("numerical", "passthrough", numerical_features),
(
"high_cardinality",
TargetEncoder(target_type="continuous"),
high_cardinality_features,
),
(
"low_cardinality",
OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=-1),
low_cardinality_features,
),
],
verbose_feature_names_out=False,
)
# The output of the of the preprocessor must be set to pandas so the
# gradient boosting model can detect the low cardinality features.
mixed_encoded_preprocessor.set_output(transform="pandas")
mixed_pipe = make_pipeline(
mixed_encoded_preprocessor,
HistGradientBoostingRegressor(
random_state=0, max_iter=max_iter, categorical_features=low_cardinality_features
),
)
mixed_pipe
最后,我们使用交叉验证评估管道并记录结果。
evaluate_model_and_store("mixed_target", mixed_pipe)
绘制结果#
在本节中,我们将通过绘制测试分数和训练分数来显示结果。
import matplotlib.pyplot as plt
import pandas as pd
results_df = (
pd.DataFrame(results).set_index("preprocessor").sort_values("rmse_test_mean")
)
fig, (ax1, ax2) = plt.subplots(
1, 2, figsize=(12, 8), sharey=True, constrained_layout=True
)
xticks = range(len(results_df))
name_to_color = dict(
zip((r["preprocessor"] for r in results), ["C0", "C1", "C2", "C3", "C4"])
)
for subset, ax in zip(["test", "train"], [ax1, ax2]):
mean, std = f"rmse_{subset}_mean", f"rmse_{subset}_std"
data = results_df[[mean, std]].sort_values(mean)
ax.bar(
x=xticks,
height=data[mean],
yerr=data[std],
width=0.9,
color=[name_to_color[name] for name in data.index],
)
ax.set(
title=f"RMSE ({subset.title()})",
xlabel="Encoding Scheme",
xticks=xticks,
xticklabels=data.index,
)
在评估测试集上的预测性能时,丢弃类别表现最差,目标编码器表现最好。这可以用如下方式解释:
丢弃分类特征会使管道表达能力降低,从而导致欠拟合;
由于高基数和为了减少训练时间,独热编码方案使用
max_categories=20
,这可以防止特征过度扩展,从而可能导致欠拟合。如果我们没有设置
max_categories=20
,独热编码方案可能会使管道过拟合,因为特征数量随着与目标偶然相关的稀有类别出现而爆炸式增长(仅在训练集上);序数编码对特征施加了一个任意顺序,然后
HistGradientBoostingRegressor
将这些特征视为数值。由于此模型每个特征将数值特征分组到256个区间中,因此许多不相关的类别可以组合在一起,结果导致整个管道可能欠拟合;使用目标编码器时,也会发生相同的区间划分,但由于编码值按与目标变量的边际关联进行统计排序,因此
HistGradientBoostingRegressor
使用的区间划分是有意义的,并能产生良好的结果:平滑的目标编码和区间划分的组合是一种有效的正则化策略,可以防止过拟合,同时不会过度限制管道的表达能力。
脚本总运行时间:(0 分钟 26.981 秒)
相关示例