嵌套与非嵌套交叉验证#

此示例比较了在 iris 数据集分类器上的非嵌套和嵌套交叉验证策略。嵌套交叉验证 (CV) 通常用于训练也需要优化超参数的模型。嵌套 CV 估计基础模型及其(超)参数搜索的泛化误差。选择最大化非嵌套 CV 的参数会使模型偏向数据集,从而产生过于乐观的得分。

没有嵌套 CV 的模型选择使用相同的数据来调整模型参数和评估模型性能。因此,信息可能会“泄漏”到模型中并过度拟合数据。这种效应的大小主要取决于数据集的大小和模型的稳定性。有关这些问题的分析,请参见 Cawley 和 Talbot [1]

为了避免这个问题,嵌套 CV 有效地使用一系列训练/验证/测试集分割。在内循环(此处由 GridSearchCV 执行),通过将模型拟合到每个训练集来近似最大化分数,然后在选择(超)参数时直接在验证集上最大化。在外循环(此处在 cross_val_score 中),通过对多个数据集分割的测试集分数进行平均来估计泛化误差。

下面的示例使用具有非线性核函数的支持向量分类器来构建通过网格搜索优化超参数的模型。我们通过取其分数之间的差值来比较非嵌套和嵌套 CV 策略的性能。

参考文献

Non-Nested and Nested Cross Validation on Iris Dataset
Average difference of 0.007581 with std. dev. of 0.007833.

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause

import numpy as np
from matplotlib import pyplot as plt

from sklearn.datasets import load_iris
from sklearn.model_selection import GridSearchCV, KFold, cross_val_score
from sklearn.svm import SVC

# Number of random trials
NUM_TRIALS = 30

# Load the dataset
iris = load_iris()
X_iris = iris.data
y_iris = iris.target

# Set up possible values of parameters to optimize over
p_grid = {"C": [1, 10, 100], "gamma": [0.01, 0.1]}

# We will use a Support Vector Classifier with "rbf" kernel
svm = SVC(kernel="rbf")

# Arrays to store scores
non_nested_scores = np.zeros(NUM_TRIALS)
nested_scores = np.zeros(NUM_TRIALS)

# Loop for each trial
for i in range(NUM_TRIALS):
    # Choose cross-validation techniques for the inner and outer loops,
    # independently of the dataset.
    # E.g "GroupKFold", "LeaveOneOut", "LeaveOneGroupOut", etc.
    inner_cv = KFold(n_splits=4, shuffle=True, random_state=i)
    outer_cv = KFold(n_splits=4, shuffle=True, random_state=i)

    # Non_nested parameter search and scoring
    clf = GridSearchCV(estimator=svm, param_grid=p_grid, cv=outer_cv)
    clf.fit(X_iris, y_iris)
    non_nested_scores[i] = clf.best_score_

    # Nested CV with parameter optimization
    clf = GridSearchCV(estimator=svm, param_grid=p_grid, cv=inner_cv)
    nested_score = cross_val_score(clf, X=X_iris, y=y_iris, cv=outer_cv)
    nested_scores[i] = nested_score.mean()

score_difference = non_nested_scores - nested_scores

print(
    "Average difference of {:6f} with std. dev. of {:6f}.".format(
        score_difference.mean(), score_difference.std()
    )
)

# Plot scores on each trial for nested and non-nested CV
plt.figure()
plt.subplot(211)
(non_nested_scores_line,) = plt.plot(non_nested_scores, color="r")
(nested_line,) = plt.plot(nested_scores, color="b")
plt.ylabel("score", fontsize="14")
plt.legend(
    [non_nested_scores_line, nested_line],
    ["Non-Nested CV", "Nested CV"],
    bbox_to_anchor=(0, 0.4, 0.5, 0),
)
plt.title(
    "Non-Nested and Nested Cross Validation on Iris Dataset",
    x=0.5,
    y=1.1,
    fontsize="15",
)

# Plot bar chart of the difference.
plt.subplot(212)
difference_plot = plt.bar(range(NUM_TRIALS), score_difference)
plt.xlabel("Individual Trial #")
plt.legend(
    [difference_plot],
    ["Non-Nested CV - Nested CV Score"],
    bbox_to_anchor=(0, 1, 0.8, 0),
)
plt.ylabel("score difference", fontsize="14")

plt.show()

脚本的总运行时间:(0 分钟 7.079 秒)

相关示例

多类别训练元估计器的概述

多类别训练元估计器的概述

连接多个特征提取方法

连接多个特征提取方法

可视化 scikit-learn 中的交叉验证行为

可视化 scikit-learn 中的交叉验证行为

具有交叉验证的递归特征消除

具有交叉验证的递归特征消除

由 Sphinx-Gallery 生成的图库